Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 27(9): 1092-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-16904884

RESUMO

The aim of this work was to make some preliminary evaluations on CO(2) and CH(4) emissions during composting of two-phase olive oil mill sludge (OOMS). OOMS, olive tree leaves (OTL) and shredded olive tree branches (OTB) were used as feedstock for Pile I and Pile II with a 1:1:1 and 1:1:2v/v ratio, respectively. Each pile was originally 1.2m high, 2.0m wide and approximately 15.0m long. Four 500 ml volume glass funnels were inverted and introduced in each pile, two in the core (buried 50-60 cm from the surface) and two near the surface under a thin 10-15 cm layer of the mixture. Thin (0.5 cm diameter) plastic, 80 cm long tubes were connected to the funnels. A mobile gas analyser (GA2000) was used to measure the composition (by volume) of O2, CO2 and CH4 on a daily basis. The funnels were removed prior to each turning and reinserted afterwards. From each pair of funnels (core and surface) of both piles, one was kept closed between samplings. Two way ANOVA was used to test differences between piles and among the tubes. Post hoc Tukey tests were also used to further investigate these differences. There was a significant difference (at p<0.001) in the two piles for all three gases. The average concentrations of O2, CO2 and CH4 in Pile I, from all four funnels was 16.86%, 3.89% and 0.25%, respectively, where for Pile II the average values were 18.07%, 2.38% and 0.04%, respectively. The presence of OOMS in larger amounts in Pile I (resulting in more intense decomposing phenomena), and the larger particle size of OTB in Pile II (resulting in increasing porosity) are the probable causes of these significant differences. Samples from open funnels presented lower, but not significantly lower, O2 composition (higher for CO2 and CH4) in comparison with closed funnels in both depths and both piles. Not significant were also the different mean gas compositions between core and surface funnels in the same pile.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Metano/análise , Óleos de Plantas , Solo , Grécia , Resíduos Industriais , Azeite de Oliva
2.
Biodegradation ; 17(3): 285-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16715407

RESUMO

The aim of this paper was to evaluate the use of different bulking agents in different ratios as a means to control, optimise and eventually reduce the duration of the thermophilic period in two-phase olive oil mill sludge (OOMS) composting. The bulking agents used were: (i) olive tree leaves (OTL), (ii) olive tree shredded branches (OTB) and (iii) woodchips (WDC). The selection of these materials was based on their abundance and availability on the island of Crete, the southernmost point of Greece. The ratios studied were: Pile 1, OOMS:OTL in 1:1 v/v; Pile 2, OOMS:WDC in 1:1.5 v/v; Pile 3, OOMS:OTL in 1:2 v/v; Pile 4, OOMS:OTL:OTB in 1:1:1 v/v; and Pile 5, OOMS:OTL:OTB in 1:1:2 v/v. The composting system used was that of windrows with the volume of each pile approximately 20-25 m3. The experiments took place over two consecutive years. A composting turner was used and turnings were performed at one and two week intervals. In each pile a variety of physiochemical parameters were monitored. Temperature remained high in all five trials. Piles 1, 2, 3, 4 and 5 temperatures recorded values of above 50 degrees C for 106, 158, 160, 175 and 183 days, respectively. Volumes were reduced by approximately 67%, 62%, 63%, 80% and 84%, respectively. Temperature remained high, mainly due to the presence in large amounts of oily substances which during their complete oxidation release important amounts of energy and aid the cometabolism of more stable molecules such as lignin. This process is better described as the slow "burning" of a "fuel" mixture in an "engine" than composting. This approach is based on the extensive similarities of this process to that of crude oil sludge or similar waste composting.


Assuntos
Microbiologia Industrial/métodos , Resíduos Industriais , Óleos de Plantas , Solo , Gerenciamento de Resíduos/métodos , Físico-Química/métodos , Grécia , Azeite de Oliva , Folhas de Planta , Temperatura , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...