Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 106: 106898, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38749103

RESUMO

Nanocellulose (CNF) has emerged as a promising alternative to synthetic petroleum-based polymers, but the conventional preparation process involves multiple tedious steps, heavily dependent on chemical input, and proves cost-inefficient. This study presented an, in situ ultrasound-assisted extraction using deep eutectic solvent (DES) based on choline chloride and oxalic acid for more facile production of CNF from raw durian husk fibers. FESEM analysis confirmed the successful extraction of web-like nanofibril structure with width size ranging from 18 to 26 nm. Chemical composition analysis and FTIR revealed the selective removal of lignin and hemicellulose from the raw fiber. As compared to post-ultrasound treatment, in situ ultrasound-assisted extraction consistently outperforms, yielding a higher CNF yield with finer fiber width and significantly reduced lignin content. Integrating this eco-friendly in situ ultrasonication-assisted one-pot extraction method with a 7.5 min interval yielded the highest CNF yield of 58.22 % with minimal lignin content. The superior delignification ability achieved through the proposed in situ ultrasound-assisted protocol surpasses the individual efficacy of DES and ultrasonication processes, neither of which yielded CNF in our experimental setup. This single-step fabrication process significantly reduces chemical usage and streamlines the production steps yielding web-structured CNF that is ideal for sustainable application in membrane and separator.

2.
Indian J Otolaryngol Head Neck Surg ; 76(2): 1755-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38566744

RESUMO

Peritonsillar abscess is a polymicrobial infection with acute life threatening complications if not treated promptly. Primary objective is to find the anatomical factor for unilateral abscess formation and appropriate management protocols. Secondary objectives include the bacteriological study,antibiotic preference and comparison of crypt length of both tonsils post tonsillectomy to look for any significant association. A prospective study was carried out for one year in patients with peritonsillitis or peritonsillar abscess attending the Department of ENT in our hospital. Acute cases were treated by incision and drainage followed by IV antibiotics after taking pus or throat swab for culture and sensitivity. Patients further planned for interval tonsillectomy after 6 weeks followed by histopathological examination to compare the infected side and normal side. Crypt length measurements done to see any disparity which would have lead to the development of peritonsillar abscess unilaterally. In patients with peritonsillitis or peritonsillar abscess, histopathological examination of tonsils after interval tonsillectomy showed that risk of peritonsillitis or peritonsillar abscess were more on the tonsil with larger crypt length with more preponderance on left side and in males. This study concludes that deeper the crypt length,male sex, history of recurrent tonsillitis are main risk factors for development of peritonsillar abscess. Bacteriology showed Staphylococcus aureus against the most common Streptococcus Sp. Hence prompt use of antibiotics help in early recovery and reducing complications.

3.
Ultrason Sonochem ; 105: 106849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513544

RESUMO

Hydrodynamic cavitation (HC), a promising technology for enhancing processes, has shown distinct effectiveness and versatility in various chemical and environmental applications. The recently developed advanced rotational hydrodynamic cavitation reactors (ARHCRs), employing cavitation generation units (CGUs) to induce cavitation, have demonstrated greater suitability for industrial-scale applications than conventional devices. However, the intricate interplay between vortex and cavitation, along with its spatial-temporal evolution in the complex flow field of ARHCRs, remains inadequately elucidated. This study investigated the interaction mechanism between cavitation and vortex in a representative interaction-type ARHCR for the first time using the "simplified flow field strategy" and the Q-criterion. The findings reveal that the flow instability caused by CGUs leads to intricate helical and vortex flows, subsequently giving rise to both sheet and vortex cavitation. Subsequently, utilizing the Q-criterion, the vortex structures are identified to be concentrated inside and at CGU edges with evolution process of mergence and separation. These vortex structures directly influence the shape and dimensions of cavities, establishing a complex interaction with cavitation. Lastly, the vorticity transport equation analysis uncovered that the stretching and dilatation terms dominate the vorticity transport process. Simultaneously, the baroclinic term focuses on the vapor-liquid interface, characterized by significant alterations in density and pressure gradients. These findings contribute to a better comprehension of the cavitation-vortex interaction in ARHCRs.

4.
Cureus ; 16(2): e54581, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523922

RESUMO

BACKGROUND:  The development of computerized aids for dental education offers potential benefits in teaching complex procedures, such as the design of removable partial dentures (RPDs). This study aimed to assess the efficacy of a novel computerized tool in enhancing the ability of both dental students and practicing dentists to design RPDs, as well as to evaluate its utility as an interactive educational instrument. METHODS:  A cohort comprising a total of 75 individuals (25 practicing dentists and 50 undergraduate dental students) was enlisted. Participants were introduced to an online interactive application tailored for the design of RPDs. They were tasked with resolving clinical scenarios that necessitated the formulation of an RPD. Throughout the exercise, users were provided with hints addressing errors made during the process, fostering self-directed learning for improved RPD design. Post-interaction, the perceptions of both dentists and students regarding the tool were gauged through a comprehensive questionnaire. RESULTS:  The deployment of the online interactive application demonstrated significant promise in the effective design of RPDs, facilitated by self-directed learning. It also appeared to enhance the proficiency of practicing dentists in formulating partial dentures. CONCLUSION:  The computerized aid evaluated in this study provided an effective platform for both dental education and practice. It not only supported self-directed learning in the design of RPDs but also improved the efficiency of professional dentists in their clinical design work.

5.
Environ Sci Pollut Res Int ; 31(14): 20983-20998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381290

RESUMO

This work investigates the photocatalytic performance of V2O5 and V3O7 nanoparticles and their nanocomposites with rGO. The as-annealed V2O5 and V3O7 nanoparticles exhibited pure orthorhombic and monoclinic structures with an optical bandgap of 2.3 and 2.5 eV, respectively. The corresponding vibrational modes using Raman and FTIR spectroscopy analysis further confirm the form. The morphological studies reveal that V2O5 and V3O7 nanoparticles possess plate and petal-like morphology, respectively. Moreover, in the case of V2O5/V3O7-rGO nanocomposites, the plate/petal-like nanoparticles are embedded within rGO sheets. Incorporating nanoparticles within rGO sheets has quenched the green photoluminescence emission, enhancing their photocatalytic performance upon irradiation with white light of 100 mW/cm2. This is ascribed to the effective transport of interfacial electrons from vanadium oxide nanoparticles to the rGO surface, reducing the recombination of photogenerated charge carriers. These results indicate that the vanadium oxide/rGO nanocomposites have potential applications in wastewater treatment.


Assuntos
Grafite , Azul de Metileno , Nanocompostos , Azul de Metileno/química , Vanádio , Catálise , Óxidos/química , Nanocompostos/química
7.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063355

RESUMO

Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.

8.
Foods ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002203

RESUMO

This investigation examined how the Bacillus vallismortis laccase (rBVL-MRL522) influenced the physicochemical characteristics, structural attributes, and functional capabilities of both dough and noodles. Incorporating rBVL-MRL522 (1 U/g) did not lead to a substantial change in the water absorption of wheat flour. However, the introduction of rBVL-MRL522 caused a significant elongation in the formation time of wheat flour dough, extending it by 88.9%, and also resulted in a 50% increase in the stabilization duration of wheat flour dough. Furthermore, adding rBVL-MRL522 led to a proportional rise in both the elastic and viscous moduli (G'' of the dough, signifying that r-BVL (rBVL-MRL522) has a beneficial effect on the gluten strength of the dough. Integrating rBVL-MRL522 promoted the consolidation of the gluten-based cross-linked structure within the dough, decreasing the size of starch particles and, more evenly, the dispersion of these starch particles. In the noodle processing, adding rBVL-MRL522 at a rate of 1 U/g raised the L* value of the noodles by 2.34 units compared to the noodles prepared without the inclusion of rBVL-MRL522. Using a greater amount of rBVL-MRL522 (2 U/g) substantially increased the hardness of the noodles by 51.31%. Additionally, rBVL-MRL522 showed a noteworthy enhancement in the elasticity, cohesiveness, and chewiness of the noodles. In conclusion, rBVL-MRL522 promoted the cross-linking gluten, leading to a more extensive and condensed three-dimensional network structure in raw and cooked noodles. As a result, this study offers valuable insights into the environmentally friendly processing of dough and associated products.

9.
ACS Omega ; 8(39): 36162-36170, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810658

RESUMO

This study optimized biodiesel synthesis from Pangasius fat using a Box-Behnken experimental design. The manipulation of key variables included the CoFe2O4 catalyst dosage, the methanol-to-fat molar ratio, and the ultrasonic wave amplitude. We determined optimal conditions for biodiesel synthesis through the central runs, resulting in a remarkable 96.5% yield. The produced biodiesel exhibited diverse fatty acid compositions and met specifications for viscosity, specific gravity, acid value, and iodine value. Furthermore, we conducted a comprehensive life cycle assessment (LCA) to shed light on the environmental implications of the process. The LCA revealed a minimal global warming potential of 0.21 kg CO2 per kg of biodiesel produced, demonstrating the environmental viability of the entire process. These significant findings highlight the promising potential of using Pangasius fat as a sustainable feedstock for biodiesel production. Additionally, they provide valuable insights into developing ecologically friendly energy sources.

10.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811640

RESUMO

Nowadays, fruits are gaining high demand due to their promising advantages on human health. Astonishingly, their by-products, that is, seeds and peels, account for 10-35% of fruit weight and are usually thrown as waste after consumption or processing. But it is neglected that fruit seeds also have functional properties and nutritional value, and thus could be utilized for dietary and therapeutic purposes, ultimately reducing the waste burden on the environment. Owing to these benefits, researchers have started to assess the nutritional value of different fruits seeds, in addition to the chemical composition in various bioactive constituents, like carotenoids (lycopene), flavonoids, proteins (bioactive peptides), vitamins, etc., that have substantial health benefits and can be used in formulating different types of food products with noteworthy functional and nutraceutical potential. The current review aims to comprehend the known information of nutritional and phytochemical profiling of non-edible fruits seeds, viz. apple, apricot, avocado, cherry, date, jamun, litchi, longan, mango, and papaya. Additionally, clinical studies conducted on these selected non-edible fruit seed extracts, their safety issues and their enrichment in food products as well as animal feed has also been discussed. This review aims to highlight the potential applications of the non-edible fruit seeds in developing new food products and also provide a viable alternative to reduce the waste disposal issue faced by agro-based industries.

11.
Ultrason Sonochem ; 99: 106587, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683418

RESUMO

This study is aimed to explore the feasibility of ultrasound on enhancing the fermentation properties of ginkgo kernel juice by Lactiplantibacillus plantarum Y2. Specifically, ultrasound at 20 kHz and different intensities (mild ultrasound intensity-84.42 W/L, moderate ultrasound intensity-115.50 W/L, high ultrasound intensity-173.88 W/L) with a pulse mode were applied to facilitate the fermentation process. The number of viable cells of Lactiplantibacillus plantarum Y2 increased by 5.06, 5.05 and 2.19% in the sonicated groups at 173.88, 115.50 and 84.42 W/L, compared with the non-sonicated juice after 24-h fermentation. Furthermore, mild intensity ultrasonication improved the permeability of the cell membrane, which is beneficial for the metabolism of phenolics, amino acids and organic acids. Ultrasonication increased in-vitro antioxidant activity of fermented ginkgo kernel juice by promoting the metabolism of phenolic acids, such as ferulic acid, chlorogenic and caffeic acids. At the end of fermentation, the sonicated group at 84.42 W/L has the maximum consumptions of total sugars and proteins (increased by 12.52 and 18.73%). Moreover, the reduction rate of the poison material 4'-O-methylpyridoxine (MPN) in ginkgo kernel juice increased by more than 16.40% with ultrasound treatment at 173.88 W/L after the fermentation for 48 h. Overall, ultrasound can improve the metabolizations of Lactobacillus plantarum and reduce the toxic substances, which promoted the nutritional value and flavors of ginkgo kernel juice.


Assuntos
Ginkgo biloba , Sementes , Fermentação , Ultrassonografia , Aminoácidos
12.
Ultrason Sonochem ; 99: 106540, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542752

RESUMO

Ultrasonic waves can induce physical and chemical changes in liquid media via acoustic cavitation. Various applications have benefitted from utilizing these effects, including but not limited to the synthesis of functional materials, emulsification, cleaning, and processing. Several books and review articles in the public domain cover both fundamental and applied aspects of ultrasonics and sonochemistry. The Editors of the Ultrasonics Sonochemistry journal possess diverse expertise in this field, from theoretical and experimental aspects of acoustic cavitation to materials synthesis, environmental remediation, and sonoprocessing. This article provides Editors' perspectives on various aspects of ultrasonics and sonochemistry that may benefit students and early career researchers.

13.
Ultrason Sonochem ; 99: 106544, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544171

RESUMO

Hydrodynamic cavitation (HC) is widely considered a promising process intensification technology. The novel advanced rotational hydrodynamic cavitation reactors (ARHCRs), with considerably higher performance compared with traditional devices, have gained increasing attention of academic and industrial communities. The cavitation generation unit (CGU), located on the rotor and/or stator of an ARHCR, is utilized to generate cavitation and consequently, its geometrical structure is vital for the performance. The present work studied, for the first time, the effect of the arrangement of CGU on the performance of a representative ARHCR by employing computational fluid dynamics based on the "simplified flow field" strategy. The effect of CGU arrangement, which was neglected in the past, was evaluated: radial offset distance (c), intersection angle (ω), number of rows (N), circumferential offset angle (γ), and radial spacing (r). The results indicate that the CGU, with an arrangement of a low ω and moderate c, N, γ, and r, performed the highest cavitation efficiency. The corresponding reasons were analyzed by combining the flow field and cavitation pattern. Moreover, the results also exposed a weakness of the "simplified flow field" strategy which may induce the unfavorable "sidewall effect" and cause false high-pressure region. The findings of this work may provide a reference value to the design of ARHCRs.

14.
Ultrason Sonochem ; 98: 106519, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37467548

RESUMO

Using natural dyes in dyeing industries becomes an alternative to synthetic dyes, which are known to contain harmful chemicals that can pose risks to the environment and human health. This study involves the extraction of yellow dye from Cassia alata flower petals, optimization of the extraction process using an ultrasonic bath (40 KHz and an input power of 500), ultrasonic probe (390 W, 455 W, 520 W, 585 W, and 650 W), and conventional heating (heating mantle with 30 °C, 40 °C, 50 °C, 60 °C, and 70 °C), characterization of the dye, as well as dyeing (cotton, silk, and leather) without using a mordant. The extracted yellow dye was further evaluated to determine its antibacterial activity against skin bacteria. Dye extraction optimization using UV-Visible spectrophotometric analysis revealed that the maximum yellow color in methanol extract (287 and 479 nm) was obtained at 50 °C for 45 min using ultrasonic water bath extraction, followed by the ultrasonic probe and direct heating. Based on the FTIR spectra, it is evident that OH is present at approximately 3300 cm-1, while CH stretches at around 2900 cm-1. A characteristic peak at 1608 cm-1 bears a striking similarity to anthraquinonoid-based compounds. Also, using the ultrasonic water bath dyeing technique at 50 °C for 45 min, the yellow color of cotton, silk, and leather was dyed optimally. Due to effective color removal after two washings with boiling soap liquid, the dyed cotton and silk fabric displayed good washing and rubbing fastness. Regarding antibacterial activity, the dye was highly active against all pathogens after extraction in methanol. The maximum inhibition was observed against Pseudomonas sp. with a MIC value of 1.56 mg/ml.


Assuntos
Cassia , Humanos , Corantes/farmacologia , Corantes/química , Metanol , Seda , Flores , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água
15.
Ultrason Sonochem ; 97: 106454, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271031

RESUMO

Water reclamation from lakes needs to be accomplished efficiently and affordably to ensure the availability of clean, disinfected water for society. Previous treatment techniques, such as coagulation, adsorption, photolysis, ultraviolet light, and ozonation, are not economically feasible on a large scale. This study investigated the effectiveness of standalone HC and hybrid HC + H2O2 treatment techniques for treating lake water. The effect of pH (3 to 9), inlet pressure (4 to 6 bar), and H2O2 loading (1 to 5 g/L) were examined. At pH = 3, inlet pressure of 5 bar and H2O2 loadings of 3 g/L, maximum COD and BOD removal were achieved·H2O2 was observed to significantly improve the performance of the HC when used as a chemical oxidant. In an optimal operating condition, a COD removal of 54.5 % and a BOD removal of 51.5 % using HC alone for 1 h is observed. HC combined with H2O2 removed 64 % of both COD and BOD. The hybrid HC + H2O2 treatment technique resulted in a nearly 100% removal of pathogens. The results of this study indicate that the HC-based technique is an effective method for removing contaminants and disinfection of the lake water.

16.
Biomed Pharmacother ; 165: 115022, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336149

RESUMO

Cells produce reactive oxygen species (ROS) as a metabolic by-product. ROS molecules trigger oxidative stress as a feedback response that significantly initiates biological processes such as autophagy, apoptosis, and necrosis. Furthermore, extensive research has revealed that hydrogen peroxide (H2O2) is an important ROS entity and plays a crucial role in several physiological processes, including cell differentiation, cell signalling, and apoptosis. However, excessive production of H2O2 has been shown to disrupt biomolecules and cell organelles, leading to an inflammatory response and contributing to the development of health complications such as collagen deposition, aging, liver fibrosis, sepsis, ulcerative colitis, etc. Extracts of different plant species, phytochemicals, and Lactobacillus sp (probiotic) have been reported for their anti-oxidant potential. In this view, the researchers have gained significant interest in exploring the potential plants spp., their phytochemicals, and the potential of Lactobacillus sp. strains that exhibit anti-oxidant properties and health benefits. Thus, the current review focuses on comprehending the information related to the formation of H2O2, the factors influencing it, and their pathophysiology imposed on human health. Moreover, this review also discussed the anti-oxidant potential and role of different extract of plants, Lactobacillus sp. and their fermented products in curbing H2O2­induced oxidative stress in both in-vitro and in-vivo models via boosting the anti-oxidative activity, inhibiting of important enzyme release and downregulation of cytochrome c, cleaved caspases-3, - 8, and - 9 expression. In particular, this knowledge will assist R&D sections in biopharmaceutical and food industries in developing herbal medicine and probiotics-based or derived food products that can effectively alleviate oxidative stress issues induced by H2O2 generation.


Assuntos
Antioxidantes , Probióticos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Apoptose , Plantas/metabolismo , Probióticos/farmacologia
17.
Food Res Int ; 169: 112870, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254319

RESUMO

Nutraceutical supplements provide health benefits, such as fulfilling the lack of nutrients in the human body or being utilized to treat or cure certain diseases. As the world population is growing, certain countries are experiencing food crisis challenges, causing natural foods are not sustainable to be used for nutraceutical production because it will require large-scale of food supply to produce enriched nutraceutics. The high demand for abundant nutritional compounds has made microalgae a reliable source as they can synthesize high-value molecules through photosynthetic activities. However, some microalgae species are limited in growth and unable to accumulate a significant amount of biomass due to several factors related to environmental conditions. Therefore, adding nanoparticles (NPs) as a photocatalyst is considered to enhance the yield rate of microalgae in an energy-saving and economical way. This review focuses on the composition of microalgal biomass for nutraceutical production, the health perspectives of nutritional compounds on humans, and the application of nanotechnology on microalgae for improved production and harvesting. The results obtained show that microalgal-based compounds indeed have better nutrients content than natural foods. However, nanotechnology must be further comprehended to make them non-hazardous and sustainable.


Assuntos
Microalgas , Humanos , Suplementos Nutricionais , Biomassa , Nutrientes
18.
Ultrason Sonochem ; 97: 106446, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37224639

RESUMO

We have employed the large eddy simulation (LES) approach to investigate the cavitation noise characteristics of an unsteady cavitating flow around a NACA66 (National Advisory Committee for Aeronautics) hydrofoil by employing an Eulerian-Lagrangian based multiscale cavitation model. A volume of fluid (VOF) method simulates the large cavity, whereas a Lagrangian discrete bubble model (DBM) tracks the small bubbles. Meanwhile, noise is determined using the Ffowcs Williams-Hawkings equation (FW-H). Eulerian-Lagrangian analysis has shown that, in comparison to VOF, it is more effective in revealing microscopic characteristics of unsteady cavitating flows, including microscale bubbles, that are unresolvable around the cloud cavity, and their impact on the flow field. It is also evident that its evolution of cavitation features on the hydrofoil is more consistent with the experimental observations. The frequency of the maximum sound pressure level corresponds to the frequency of the main cavity shedding for the noise characteristics. Using the Eulerian-Lagrangian method to predict the noise signal, results show that the cavitation noise, generated by discrete bubbles due to their collapse, is mainly composed of high-frequency signals. In addition, the frequency of cavitation noise induced by discrete microbubbles is around 10 kHz. A typical characteristic of cavitation noise, including two intense pulses during the collapsing of the cloud cavity, is described, as well as the mechanisms that underlie these phenomena. The findings of this work provide for a fundamental understanding of cavitation and serve as a valuable reference for the design and intensification of hydrodynamic cavitation reactors.

19.
Food Res Int ; 167: 112690, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087212

RESUMO

The genetic variant A2 ß-casein integrates the casein protein group in milk and has been often associated with positive health outcomes. Therefore, this review explores the present understanding of A2 ß-casein, including detection methods and the market trends for dairy from A2 milk. Also, the interaction of A2 ß-casein with αs1-casein and κ-casein genotypes was examined in terms of technological impacts on A2 milk. A limited number of preliminary studies has aimed to investigate the sensorial and technological impacts of ß-casein variants in milk matrices, for instance, in yogurt and other derivatives. Nevertheless, considering studies carried out so far, it is concluded that the manufacture of dairy products from A2 milk is perfectly feasible, as the products presented slight differences when compared to those derived from traditional milk. In one of the works, sensitive drops in rennet coagulation time and curd firmness values were observed in cheese traits. However, it is relevant to point out that variant A of κ-casein plays a negative role in the coagulation features of milk. Therefore, alterations in the pattern of cheese-making properties are not uniquely related to ß-casein variants. Attempts to produce A2 ß-casein in laboratory (non-natural source), through biosynthesis, for example, have not been found so far. This knowledge gap offers a promising area for future studies concerning proteins and bioactive peptide production.


Assuntos
Queijo , Leite , Animais , Bovinos , Feminino , Leite/química , Caseínas/análise , Genótipo , Fenótipo
20.
Environ Res ; 229: 115940, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080276

RESUMO

Long-term exposure to the highly toxic heavy metal arsenic can harm ecological systems and pose serious health risks to humans. Arsenic pollutant in water and the food chain must be addressed, and active prompt detection of As(III) is essential. The development of an effective detection method for As(III) ions is urgently needed to slow the alarming growth of arsenic pollution in the environment and safeguard the well-being of future generations. This study presents the results of our exhaustive investigation into cubic CsPbBr3 single crystals, the glassy carbon (GC) electrode modification with CsPbBr3 single crystals prepared by direct solvent evaporation, as well as our observations of the material's remarkable electrocatalytic properties and exceptional anti-interference sensing of As(III) ions in neutral pH media. The developed CsPbBr3/GC is exceptionally useful for the ultra-sensitive and specific identification of arsenic in water, exhibiting a detection limit of 0.381 µmol/L, a rapid response across a defined range of 0.1-25 µmol/L, and an ultra-sensitivity of 0.296 µA/µmolL-1. CsPbBr3/GCE (prepared without a specific reagent) is superior to other modified electrodes used as sensors in electrocatalytic activity, detection limit, analytical sensitivity, and stability response.


Assuntos
Arsênio , Humanos , Limite de Detecção , Arsênio/análise , Substâncias Perigosas , Técnicas Eletroquímicas/métodos , Água , Carbono/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...