Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 38: 101805, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33285413

RESUMO

Obesity is associated with metabolic dysregulation characterized by insulin resistance and glucose intolerance. Nuclear factor E2-related factor (Nrf2) is a critical regulator of the stress response and Nrf2-deficient mice (Nrf2-/-) are protected against high fat diet (HFD)-induced metabolic derangement. We searched for factors that could underline this favorable phenotype and found that Nrf2-/- mice exhibit higher circulating levels of sirtuin 1 (Sirt1), a key player in cellular homeostasis and energy metabolism, compared to wild-type mice. Increased Sirt1 levels in Nrf2-/- mice were found not only in animals under standard diet but also following HFD. Interestingly, we report here that the visceral adipose tissue (eWAT) is the sole source of increased Sirt1 protein in plasma. eWAT and other fat depots displayed enhanced adipocytes lipolysis, increased fatty acid oxidation and glycolysis, suggesting autocrine and endocrine actions of Sirt1 in this model. We further demonstrate that removal of eWAT completely abolishes the increase in circulating Sirt1 and that this procedure suppresses the beneficial effect of Nrf2 deficiency on glucose tolerance, but not insulin sensitivity, following a HFD regime. Thus, in contrast to many other stressful conditions where Nrf2 deficiency exacerbates damage, our study indicates that up-regulation of Sirt1 levels specifically in the visceral adipose tissue of Nrf2-/- mice is a key adaptive mechanism that mitigates glucose intolerance induced by nutritional stress.


Assuntos
Resistência à Insulina , Sirtuína 1 , Tecido Adiposo Branco , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose , Resistência à Insulina/genética , Gordura Intra-Abdominal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fator 2 Relacionado a NF-E2/genética , Obesidade/genética , Sirtuína 1/genética
2.
Redox Biol ; 34: 101521, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335359

RESUMO

Carbon monoxide (CO) produced by heme oxygenase-1 (HO-1) or delivered by CO-releasing molecules (CO-RMs) exerts anti-inflammatory action, a feature also exhibited by the nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the stress response. We have recently developed new hybrid molecules (HYCOs) consisting of CO-RMs conjugated to fumaric esters known to activate Nrf2/HO-1. Here we evaluated the biological activities of manganese (Mn) and ruthenium (Ru)-based HYCOs in human monocytes and keratinocytes in vitro as well as in vivo models of inflammation. The effects of HYCOs were compared to: a) dimethyl fumarate (DMF), a known fumaric ester used in the clinic; b) a CO-RM alone; or c) the combination of the two compounds. Mn-HYCOs donated CO and up-regulated Nrf2/HO-1 in vitro more efficiently than Ru-HYCOs. However, irrespective of the metal, a strong reduction in anti-inflammatory markers in monocytes stimulated by LPS was observed with specific HYCOs. This effect was not observed with DMF, CO-RM alone or the combination of the two, indicating the enhanced potency of HYCOs compared to the separate entities. Selected HYCOs given orally to mice accelerated skin wound closure, reduced psoriasis-mediated inflammation and disease symptoms equalling or surpassing the effect of DMF, and ameliorated motor dysfunction in a mouse model of multiple sclerosis. Thus, HYCOs have potent anti-inflammatory activities that are recapitulated in disease models in which inflammation is a prominent component. Prolonged daily administration of HYCOs (up to 40 days) is well tolerated in animals. Our results clearly confirm that HYCOs possess a dual mode of action highlighting the notion that simultaneous Nrf2 targeting and CO delivery could be a clinically relevant application to combat inflammation.


Assuntos
Esclerose Múltipla , Psoríase , Animais , Heme Oxigenase-1/genética , Inflamação/tratamento farmacológico , Proteínas de Membrana , Camundongos , Fator 2 Relacionado a NF-E2 , Psoríase/tratamento farmacológico
3.
Redox Biol ; 20: 334-348, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391826

RESUMO

Oxidative stress and inflammation are predominant features of several chronic diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a major arbiter in counteracting these insults via up-regulation of several defensive proteins, including heme oxygenase-1 (HO-1). HO-1-derived carbon monoxide (CO) exhibits anti-inflammatory actions and can be delivered to tissues by CO-releasing agents. In this study we assessed the pharmacological and anti-inflammatory properties of HYCO-3, a dual activity compound obtained by conjugating analogues of the CO-releasing molecule CORM-401 and dimethyl fumarate (DMF), an immunomodulatory drug known to activate Nrf2. HYCO-3 induced Nrf2-dependent genes and delivered CO to cells in vitro and tissues in vivo, confirming that the two expected pharmacological properties of this agent are achieved. In mice challenged with lipopolysaccharide, orally administered HYCO-3 reduced the mRNA levels of pro-inflammatory markers (TNF-α, IL-1ß and IL-6) while increasing the expression of the anti-inflammatory genes ARG1 and IL-10 in brain, liver, lung and heart. In contrast, DMF or CORM-401 alone or their combination decreased the expression of pro-inflammatory genes but had limited influence on anti-inflammatory markers. Furthermore, HYCO-3 diminished TNF-α and IL-1ß in brain and liver but not in lung and heart of Nrf2-/- mice, indicating that the CO-releasing part of this hybrid contributes to reduction of pro-inflammation and that this effect is organ-specific. These data demonstrate that the dual activity of HYCO-3 results in enhanced efficacy compared to the parent compounds indicating the potential exploitation of hybrid compounds in the development of effective anti-inflammatory therapies.


Assuntos
Anti-Inflamatórios/farmacologia , Monóxido de Carbono/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos
4.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429365

RESUMO

Obesity is characterized by accumulation of adipose tissue and is one the most important risk factors in the development of insulin resistance. Carbon monoxide-releasing (CO-releasing) molecules (CO-RMs) have been reported to improve the metabolic profile of obese mice, but the underlying mechanism remains poorly defined. Here, we show that oral administration of CORM-401 to obese mice fed a high-fat diet (HFD) resulted in a significant reduction in body weight gain, accompanied by a marked improvement in glucose homeostasis. We further unmasked an action we believe to be novel, by which CO accumulates in visceral adipose tissue and uncouples mitochondrial respiration in adipocytes, ultimately leading to a concomitant switch toward glycolysis. This was accompanied by enhanced systemic and adipose tissue insulin sensitivity, as indicated by a lower blood glucose and increased Akt phosphorylation. Our findings indicate that the transient uncoupling activity of CO elicited by repetitive administration of CORM-401 is associated with lower weight gain and increased insulin sensitivity during HFD. Thus, prototypic compounds that release CO could be investigated for developing promising insulin-sensitizing agents.


Assuntos
Adipócitos/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Resistência à Insulina , Glicinas N-Substituídas/farmacologia , Obesidade/metabolismo , Aumento de Peso/efeitos dos fármacos , Células 3T3-L1 , Trifosfato de Adenosina/metabolismo , Adipócitos/metabolismo , Animais , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Glicinas N-Substituídas/administração & dosagem , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/farmacologia
5.
Cell Death Differ ; 24(7): 1224-1238, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28524859

RESUMO

Mesenchymal stem cells (MSCs) protect tissues against cell death induced by ischemia/reperfusion insults. This therapeutic effect seems to be controlled by physiological cues released by the local microenvironment following injury. Recent lines of evidence indicate that MSC can communicate with their microenvironment through bidirectional exchanges of mitochondria. In particular, in vitro and in vivo studies report that MSCs rescue injured cells through delivery of their own mitochondria. However, the role of mitochondria conveyed from somatic cells to MSC remains unknown. By using a co-culture system consisting of MSC and distressed somatic cells such as cardiomyocytes or endothelial cells, we showed that mitochondria from suffering cells acted as danger-signaling organelles that triggered the anti-apoptotic function of MSC. We demonstrated that foreign somatic-derived mitochondria were engulfed and degraded by MSC, leading to induction of the cytoprotective enzyme heme oxygenase-1 (HO-1) and stimulation of mitochondrial biogenesis. As a result, the capacity of MSC to donate their mitochondria to injured cells to combat oxidative stress injury was enhanced. We found that similar mechanisms - activation of autophagy, HO-1 and mitochondrial biogenesis - occurred after exposure of MSC to exogenous mitochondria isolated from somatic cells, strengthening the idea that somatic mitochondria alert MSC of a danger situation and subsequently promote an adaptive reparative response. In addition, the cascade of events triggered by the transfer of somatic mitochondria into MSC was recapitulated in a model of myocardial infarction in vivo. Specifically, MSC engrafted into infarcted hearts of mice reduced damage, upregulated HO-1 and increased mitochondrial biogenesis, while inhibition of mitophagy or HO-1 failed to protect against cardiac apoptosis. In conclusion, our study reveals a new facet about the role of mitochondria released from dying cells as a key environmental cue that controls the cytoprotective function of MSC and opens novel avenues to improve the effectiveness of MSC-based therapies.


Assuntos
Apoptose , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Ácidos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Técnicas de Cocultura , Citoproteção/efeitos dos fármacos , Doxorrubicina/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Br J Pharmacol ; 173(11): 1728-41, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26894321

RESUMO

BACKGROUND AND PURPOSE: Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) patients due to exacerbated inflammation. To date, the only anti-inflammatory drug available to CF patients is high-dose ibuprofen, which can slow pulmonary disease progression, but whose cyclooxygenase-dependent digestive adverse effects limit its clinical use. Here we have tested sulindac, another non-steroidal anti-inflammatory drug with an undefined anti-inflammatory effect in CF airway epithelial cells. EXPERIMENTAL APPROACH: Using in vitro and in vivo models, we NF-κB activity and IL-8 secretion. In HeLa-F508del cells, we performed luciferase reporter gene assays in order to measure i) IL-8 promoter activity, and ii) the activity of synthetic promoter containing NF-κB responsive elements. We quantified IL-8 secretion in airway epithelial CFBE cells cultured at an air-liquid interface and in a mouse model of CF. KEY RESULTS: Sulindac inhibited the transcriptional activity of NF-κB and decreased IL-8 transcription and secretion in TNF-α stimulated CF cells via a cyclooxygenase-independent mechanism. This effect was confirmed in vivo in a mouse model of CF induced by intra-tracheal instillation of LPS, with a significant decrease of the induction of mRNA for MIP-2, following treatment with sulindac. CONCLUSION AND IMPLICATIONS: Overall, sulindac decrease lung inflammation by a mechanism independent of cycolooxygenase. This drug could be beneficially employed in CF.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fibrose Cística/tratamento farmacológico , Prostaglandina-Endoperóxido Sintases/metabolismo , Sulindaco/farmacologia , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Linhagem Celular , Fibrose Cística/metabolismo , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulindaco/administração & dosagem
7.
Radiology ; 263(3): 786-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22523321

RESUMO

PURPOSE: To investigate whether cellular imaging by using ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance (MR) imaging can allow detection and quantification of adipose tissue macrophage-related inflammation within adipose tissue in a mouse model. MATERIALS AND METHODS: Experimental protocols were conducted in accordance with French government policies. Adipose tissue macrophages were detected and quantified with a 4.7-T MR imager in ob/ob obese mice on the basis of the signal variance of adipose tissue triggered by injection of P904 iron oxide nanoparticles (USPIO). Mice were either intravenously injected with 1000 µmol of iron per kilogram of body weight of P904 (10 ob/ob and 11 ob/+) or used as noninjected control animals (seven ob/ob and six ob/+). Three-dimensional T2*-weighted gradient-echo MR images were acquired 10 days after intravenous injection. MR imaging signal variance in mice was correlated to adipose tissue macrophage quantification by using monoclonal antibody to F4/80 immunostaining, to proinflammatory marker quantification by using reverse transcription polymerase chain reaction (CCl2, Tnfα, Emr1), and to P904 quantification by using electron paramagnetic resonance imaging. Quantitative data were compared by using the Mann-Whitney or Student t test, and correlations were performed by using the Pearson correlation test. RESULTS: MR imaging measurements showed a significant increase in adipose tissue signal variance in ob/ob mice compared with ob/+ controls or noninjected animals (P < .0001), which was consistent with increased P904 uptake by adipose tissue in ob/ob mice. There was a significant and positive correlation between adipose tissue macrophage quantification at MR imaging and P904 iron oxide content (r = 0.87, P < .0001), adipose tissue macrophage-related inflammation at immunohistochemistry (r = 0.60, P < .01), and adipose tissue proinflammatory marker expression (r = 0.55, 0.56, and 0.58 for CCl2, Tnfα, and Emr1, respectively; P < .01). CONCLUSION: P904 USPIO-enhanced MR imaging is potentially a tool for noninvasive assessment of adipose tissue inflammation during experimental obesity. These results provide the basis for translation of MR imaging into clinical practice as a marker of patients at risk for metabolic syndrome.


Assuntos
Tecido Adiposo/citologia , Meios de Contraste/metabolismo , Dextranos/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética/métodos , Obesidade/patologia , Análise de Variância , Animais , Artefatos , Meios de Contraste/administração & dosagem , Dextranos/administração & dosagem , Imageamento Tridimensional , Imuno-Histoquímica , Inflamação/imunologia , Ativação de Macrófagos , Nanopartículas de Magnetita/administração & dosagem , Camundongos , Obesidade/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
8.
BMC Genomics ; 12: 386, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806822

RESUMO

BACKGROUND: The Apiaceae family includes several vegetable and spice crop species among which carrot is the most economically important member, with ~21 million tons produced yearly worldwide. Despite its importance, molecular resources in this species are relatively underdeveloped. The availability of informative, polymorphic, and robust PCR-based markers, such as microsatellites (or SSRs), will facilitate genetics and breeding of carrot and other Apiaceae, including integration of linkage maps, tagging of phenotypic traits and assisting positional gene cloning. Thus, with the purpose of isolating carrot microsatellites, two different strategies were used; a hybridization-based library enrichment for SSRs, and bioinformatic mining of SSRs in BAC-end sequence and EST sequence databases. This work reports on the development of 300 carrot SSR markers and their characterization at various levels. RESULTS: Evaluation of microsatellites isolated from both DNA sources in subsets of 7 carrot F2 mapping populations revealed that SSRs from the hybridization-based method were longer, had more repeat units and were more polymorphic than SSRs isolated by sequence search. Overall, 196 SSRs (65.1%) were polymorphic in at least one mapping population, and the percentage of polymophic SSRs across F2 populations ranged from 17.8 to 24.7. Polymorphic markers in one family were evaluated in the entire F2, allowing the genetic mapping of 55 SSRs (38 codominant) onto the carrot reference map. The SSR loci were distributed throughout all 9 carrot linkage groups (LGs), with 2 to 9 SSRs/LG. In addition, SSR evaluations in carrot-related taxa indicated that a significant fraction of the carrot SSRs transfer successfully across Apiaceae, with heterologous amplification success rate decreasing with the target-species evolutionary distance from carrot. SSR diversity evaluated in a collection of 65 D. carota accessions revealed a high level of polymorphism for these selected loci, with an average of 19 alleles/locus and 0.84 expected heterozygosity. CONCLUSIONS: The addition of 55 SSRs to the carrot map, together with marker characterizations in six other mapping populations, will facilitate future comparative mapping studies and integration of carrot maps. The markers developed herein will be a valuable resource for assisting breeding, genetic, diversity, and genomic studies of carrot and other Apiaceae.


Assuntos
Mapeamento Cromossômico , Daucus carota/genética , Genômica , Repetições de Microssatélites/genética , Polimorfismo Genético/genética , Etiquetas de Sequências Expressas/metabolismo , Marcadores Genéticos/genética , Genoma de Planta/genética , Hibridização Genética , Especificidade da Espécie
9.
Hepatology ; 52(3): 1046-59, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20597071

RESUMO

UNLABELLED: The cannabinoid receptor 2 (CB2) plays a pleiotropic role in innate immunity and is a crucial mediator of liver disease. In this study, we investigated the impact of CB2 receptors on the regenerative process associated with liver injury. Following acute hepatitis induced by carbon tetrachloride (CCl(4)), CB2 was induced in the nonparenchymal cell fraction and remained undetectable in hepatocytes. Administration of CCl(4) to CB2(-/-) mice accelerated liver injury, as shown by increased alanine/aspartate aminotransferase levels and hepatocyte apoptosis, and delayed liver regeneration, as reflected by a retarded induction of hepatocyte proliferating cell nuclear antigen expression; proliferating cell nuclear antigen induction was also delayed in CB2(-/-) mice undergoing partial hepatectomy. Conversely, following treatment with the CB2 agonist JWH-133, CCl(4)-treated WT mice displayed reduced liver injury and accelerated liver regeneration. The CCl(4)-treated CB2(-/-) mice showed a decrease in inducible nitric oxide synthase and tumor necrosis factor-alpha expression, and administration of the nitric oxide donor moldomine (SIN-1) to these animals reduced hepatocyte apoptosis, without affecting liver regeneration. Impaired liver regeneration was consecutive to an interleukin-6 (IL-6)-mediated decrease in matrix metalloproteinase 2 (MMP-2) activity. Indeed, CCl(4)-treated CB2(-/-) mice displayed lower levels of hepatic IL-6 messenger RNA and increased MMP-2 activity. Administration of IL-6 to these mice decreased MMP-2 activity and improved liver regeneration, without affecting hepatocyte apoptosis. Accordingly, administration of the MMP inhibitor CTTHWGFTLC to CCl(4)-treated CB2(-/-) mice improved liver regeneration. Finally, in vitro studies demonstrated that incubation of hepatic myofibroblasts with JWH-133 increased tumor necrosis factor-alpha and IL-6 and decreased MMP-2 expressions. CONCLUSION: CB2 receptors reduce liver injury and promote liver regeneration following acute insult, via distinct paracrine mechanisms involving hepatic myofibroblasts. These results suggest that CB2 agonists display potent hepatoprotective properties, in addition to their antifibrogenic effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Regeneração Hepática/fisiologia , Comunicação Parácrina/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Alanina Transaminase/metabolismo , Animais , Apoptose/fisiologia , Aspartato Aminotransferases/metabolismo , Canabinoides/farmacologia , Tetracloreto de Carbono/efeitos adversos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Hepatectomia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Interleucina-6/metabolismo , Regeneração Hepática/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígeno Nuclear de Célula em Proliferação/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
PLoS One ; 4(6): e5844, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19513120

RESUMO

BACKGROUND: Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. METHODOLOGY: Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 -/-). PRINCIPAL FINDINGS: In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 -/- mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 -/- mice. CONCLUSION/SIGNIFICANCE: These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.


Assuntos
Fígado Gorduroso/terapia , Resistência à Insulina , Obesidade/terapia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Fígado Gorduroso/complicações , Inflamação , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/complicações , Triglicerídeos/metabolismo
11.
FASEB J ; 23(7): 2120-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19246487

RESUMO

Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.


Assuntos
Cardiomiopatias/etiologia , Fibroblastos/citologia , Traumatismo por Reperfusão Miocárdica/complicações , Miocárdio/patologia , Miócitos Cardíacos/citologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Sobrevivência Celular , Peróxido de Hidrogênio , Camundongos , Camundongos Knockout , Substâncias Protetoras , Receptor CB2 de Canabinoide/deficiência , Disfunção Ventricular Esquerda/etiologia
12.
FASEB J ; 21(9): 2005-13, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17341687

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid produced by sphingosine kinase (SphK1 and 2). We previously showed that S1P receptors (S1P1, S1P2, and S1P3) are expressed in hepatic myofibroblasts (hMF), a population of cells that triggers matrix remodeling during liver injury. Here we investigated the function of these receptors in the wound healing response to acute liver injury elicited by carbon tetrachloride, a process that associates hepatocyte proliferation and matrix remodeling. Acute liver injury was associated with the induction of S1P2, S1P3, SphK1, and SphK2 mRNAs and increased SphK activity, with no change in S1P1 expression. Necrosis, inflammation, and hepatocyte regeneration were similar in S1P2-/- and wild-type (WT) mice. However, compared with WT mice, S1P2-/- mice displayed reduced accumulation of hMF, as shown by lower induction of smooth muscle alpha-actin mRNA and lower induction of TIMP-1, TGF-beta1, and PDGF-BB mRNAs, overall reflecting reduced activation of remodeling in response to liver injury. The wound healing response was similar in S1P3-/- and WT mice. In vitro, S1P enhanced proliferation of cultured WT hMF, and PDGF-BB further enhanced the mitogenic effect of S1P. In keeping with these findings, PDGF-BB up-regulated S1P2 and SphK1 mRNAs, increased SphK activity, and S1P2 induced PDGF-BB mRNA. These effects were blunted in S1P2-/- cells, and S1P2-/- hMF exhibited reduced mitogenic and comitogenic responses to S1P. These results unravel a novel major role of S1P2 in the wound healing response to acute liver injury by a mechanism involving enhanced proliferation of hMF.


Assuntos
Fibroblastos/fisiologia , Regeneração Hepática/fisiologia , Lisofosfolipídeos/fisiologia , Mioblastos de Músculo Liso/fisiologia , Receptores de Lisoesfingolipídeo/fisiologia , Esfingosina/análogos & derivados , Doença Aguda , Animais , Becaplermina , Intoxicação por Tetracloreto de Carbono/genética , Intoxicação por Tetracloreto de Carbono/patologia , Divisão Celular , Células Cultivadas/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Replicação do DNA/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Regeneração Hepática/genética , Lisofosfolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos de Músculo Liso/efeitos dos fármacos , Necrose , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/farmacologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas Proto-Oncogênicas c-sis , Receptores de Lisoesfingolipídeo/biossíntese , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Esfingosina/farmacologia , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/genética , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...