Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-512134

RESUMO

The recently identified, globally predominant SARS-CoV-2 Omicron variant (BA.1) is highly transmissible, even in fully vaccinated individuals, and causes attenuated disease compared with other major viral variants recognized to date1-7. The Omicron spike (S) protein, with an unusually large number of mutations, is considered the major driver of these phenotypes3,8. We generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron in the backbone of an ancestral SARS-CoV-2 isolate and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escapes vaccine-induced humoral immunity, mainly due to mutations in the receptor-binding motif (RBM), yet unlike naturally occurring Omicron, efficiently replicates in cell lines and primary-like distal lung cells. In K18-hACE2 mice, while Omicron causes mild, non-fatal infection, the Omicron S-carrying virus inflicts severe disease with a mortality rate of 80%. This indicates that while the vaccine escape of Omicron is defined by mutations in S, major determinants of viral pathogenicity reside outside of S.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278278

RESUMO

BackgroundThere are reports of viral RNA and symptom rebound in people with COVID-19 treated with nirmatrelvir/ritonavir. Since the natural course of viral and symptom trajectories of COVID-19 has not been well described, we evaluated the incidence of viral and symptom rebound in untreated outpatients with mild-moderate COVID-19. MethodsThe study population included 568 participants enrolled in the ACTIV-2/A5401 platform trial who received placebo. Anterior nasal swabs were collected for SARS-CoV-2 RNA testing on days 0-14, 21 and 28. Participants recorded the severity of 13 targeted symptoms daily from day 0 to 28. Viral rebound was defined as [≥]0.5 log10 viral RNA copies/mL increase and symptom rebound was defined as a 4-point total symptom score increase from baseline. Baseline was defined as study day 4 (primary analysis) or 8 days from symptom onset (secondary analysis). FindingsIn both the primary and secondary analyses, 12% of participants had viral rebound. Viral rebounders were older than non-rebounders (median 54 vs 47 years, P=0.04). Symptom rebound occurred in 27% of participants after initial symptom improvement and in 10% of participants after initial symptom resolution. The combination of high-level viral rebound to [≥]5.0 log10 RNA copies/mL and symptom rebound after initial improvement was observed in 1-2% of participants. InterpretationViral RNA rebound or symptom relapse in the absence of antiviral treatment is common, but the combination of high-level viral and symptom rebound is rare. FundingThis study was supported by the National Institute of Allergy and Infectious Diseases; ACTIV-2/A5401 ClinicalTrials.gov number NCT04518410.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22275326

RESUMO

We enrolled seven individuals with recurrent symptoms following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected at enrollment and for a median of 17 days after initial diagnosis. Three of seven had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-386714

RESUMO

BackgroundSARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Whole-genome sequencing (WGS) of the virus with death in SARS-CoV-2 patients is one potential method of early identification of highly pathogenic strains to target for containment. MethodsWe analyzed 7,548 single stranded RNA-genomes of SARS-CoV-2 patients in the GISAID database (Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017) and associated variants with reported patients health status from COVID-19, i.e. deceased versus non-deceased. We probed each locus of the single stranded RNA of the SARS-CoV-2 virus for direct association with host/patient mortality using a logistic regression. ResultsIn total, evaluating 29,891 loci of the viral genome for association with patient/host mortality, two loci, at 12,053bp and 25,088bp, achieved genome-wide significance (p-values of 4.09e-09 and 4.41e-23, respectively). ConclusionsMutations at 25,088bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Additionally, mutations at 12,053bp are within the ORF1ab gene, in a region encoding for the protein nsp7, which is necessary to form the RNA polymerase complex responsible for viral replication and transcription. Both mutations altered amino acid coding sequences, potentially imposing structural changes that could enhance viral infectivity and symptom severity, and may be important to consider as targets for therapeutic development. Identification of these highly significant associations, unlikely to occur by chance, may assist with COVID-19 early containment of strains that are potentially highly pathogenic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA