Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-23, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064315

RESUMO

Tuberculosis is one of the most ancient infectious diseases known to mankind predating upper Paleolithic era. In the current scenario, treatment of drug resistance tuberculosis is the major challenge as the treatment options are limited, less efficient and more toxic. In our study we have developed an atom based 3D QSAR model, statistically validated sound with R2 > 0.90 and Q2 > 0.72 using reported direct inhibitors of InhA (2018-2022), validated by enzyme inhibition assay. The model was used to screen a library of 3958 molecules taken from Binding DB and candidates molecules with promising predicted activity value (pIC50) > 5) were selected for further analyzed screening by using molecular docking, ADME profiling and molecular dynamic simulations. The lead molecule, ZINC11536150 exhibited good docking score (glideXP = -11.634 kcal/mol) compared to standard triclosan (glideXP = -7.129 kcal/mol kcal/mol) and through molecular dynamics study it was observed that the 2nv6-complex of ZINC11536150 with Mycobacterium tuberculosis InhA (PDB entry: 2NV6) complex remained stable throughout the entire simulation time of 100 ns.Communicated by Ramaswamy H. Sarma.

2.
Expert Opin Ther Targets ; 27(12): 1257-1269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112471

RESUMO

INTRODUCTION: In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of naturally occurring chemicals. Chalcone exhibits extensive biological activity and has drawn attention in this context due to its function in the GABA receptor. Epilepsy and GABA receptors are related. It is a chronic neurological condition that affects globally. AREAS COVERED: Numerous neurological disorders, including anxiety and epilepsy, have been related to GABA, the brain's most prevalent inhibitory neurotransmitter. We go through the role of GABA receptors in anxiety and epilepsy in this review. The structure-activity relationship of chalcone and its derivatives on the GABA receptor is covered in our final section. EXPERT OPINION: GABA is a potential therapeutic target for issues associated with the nervous system. We talk about the potential effects of chalcone as a treatment for epilepsy and anxiety on the GABA receptor. Therefore, thorough research is necessary in this regard; the value of in silico tools in developing and enhancing GABA agonists is significant.


Assuntos
Chalcona , Chalconas , Epilepsia , Humanos , Receptores de GABA , Chalcona/química , Chalcona/farmacologia , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico , Receptores de GABA-A/fisiologia
3.
J Biomol Struct Dyn ; : 1-20, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870113

RESUMO

Thymidylate synthase (TS) is a crucial target of cancer drug discovery and is mainly involved in the De novo synthesis of the DNA precursor thymine. In the present study, to generate reliable models and identify a few promising molecules, we combined QSAR modelling with the pharmacophore hypothesis-generating technique. Input molecules were clustered on their similarity, and a cluster of 74 molecules with a pyrimidine moiety was chosen as the set for 3D-QSAR and pharmacophore modelling. Atom-based and field-based 3D-QSAR models were generated and statistically validated with R2 > 0.90 and Q2 > 0.75. The common pharmacophore hypothesis(CPH) generation identified the best six-point model ADHRRR. Using these best models, a library of FDA-approved drugs was screened for activity and filtered via molecular docking, ADME profiling, and molecular dynamics simulations. The top ten promising TS-inhibiting candidates were identified, and their chemical features profitable for TS inhibitors were explored.Communicated by Ramaswamy H. Sarma.

4.
Chem Biol Drug Des ; 102(6): 1604-1617, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688395

RESUMO

Monocarboxylate transporters (MCTs) have gained significant attention in cancer research due to their critical role in tumour metabolism. MCTs are legends for transporting lactate molecules in cancer cells, an oncometabolite and waste product of glycolysis, acting as an indispensable factor of tumour proliferation. Targeting MCTs with inhibitors has emerged as a promising strategy to combat tumorigenesis. This article summarizes the most recent research on MCT inhibitors in preventing carcinogenesis, covering both heterocyclic and non-heterocyclic compounds. Heterocyclic and non-heterocyclic compounds such as pteridine, pyrazole, indole, flavonoids, coumarin derivatives and cyanoacetic acid derivatives have been reported as potent MCT inhibitors. We examine the molecular underpinnings of MCTs in cancer metabolism, the design and synthesis of heterocyclic and non-heterocyclic MCT inhibitors, their impact on tumour cells and the microenvironment and their potential as therapeutic agents. Moreover, we explore the challenges associated with MCT inhibitor development and propose future directions for advancing this field. This write-up aims to provide researchers, scientists and clinicians with a comprehensive understanding of the heterocyclic and non-heterocyclic MCT inhibitors and their potential in combating tumorigenesis.


Assuntos
Proteínas de Membrana Transportadoras , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Carcinogênese , Compostos Orgânicos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...