Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(11): 2823-2830, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35522956

RESUMO

A total of 353 urediniospore isolates of Puccinia striiformis f. sp. tritici (Pst) collected in Israel during 2001 to 2019 were analyzed. Pst pathogenicity was studied with a set of 20 differentials (17 Avocet and 3 other lines). Three periods were compared: 2001 to 2007, 2009 to 2016, and 2017 to 2019. No virulence to Yr5 or Yr15 was detected. Virulence frequencies on Yr4, Yr10, Yr24, and YrSp genes rose to the moderate level (0.28 to 0.44) in 2017 to 2019. Virulence frequencies to Yr2 and Yr9 decreased. One Pst phenotype was identified in all three periods, but its frequency drastically decreased from 0.74 in 2001 to 2016 to 0.21 in 2017 to 2019. The most probable scenario of emergence of wheat yellow rust in Israel is wind dissemination of Pst urediniospores from the Horn of Africa. Variability of the Pst population increased amid considerable evolution with two major transformations in 2009 and 2017. The first modification can be attributed to changes in wheat genetic background in Israel due to deployment of new cultivars resistant to yellow rust since 2004. The second shift in 2017 can be primarily explained by intensive deployment of wheat cultivars resistant to the stem rust race Ug99 in the 2010s in the Horn of Africa. This led to changing genetic backgrounds of the cultivated wheats in the donor region and development and long-distance spread of new Pst phenotypes to Israel. Two singular multivirulent Pst phenotypes were identified in 2019, one of them being closely related to the aggressive Warrior race. Such phenotypes may potentially defeat existing resistances.


Assuntos
Basidiomycota , Doenças das Plantas , Virulência/genética , Doenças das Plantas/genética , Israel , Genótipo , Basidiomycota/genética , Triticum/genética
2.
BMC Plant Biol ; 20(1): 153, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272895

RESUMO

BACKGROUND: Leaf and stripe rusts are two major wheat diseases, causing significant yield losses. The preferred way for protecting wheat from rust pathogens is by introgression of rust resistance traits from wheat-related wild species. To avoid genetic drag due to replacement of large wheat chromosomal segments by the alien chromatin, it is necessary to shorten the alien chromosome segment in primary recombinants. RESULTS: Here we report on shortening of an alien chromosome segment in wheat that carries leaf and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis). Rust resistant wheat introgression lines were selected and the alien region was mapped using genotyping by sequencing. Single polymorphic nucleotides (SNP) were identified and used to generate diagnostic PCR markers. Shortening of the alien fragment was achieved by induced homoeologous pairing and lines with shortened alien chromosome were identified using the PCR markers. Further reduction of the segment was achieved in tertiary recombinants without losing the rust resistance. CONCLUSIONS: Alien chromatin in wheat with novel rust resistance genes was characterized by SNP markers and shortened by homoeologous recombination to avoid deleterious traits. The resulting wheat lines are resistant to highly virulent races of leaf and stripe rust pathogens and can be used as both resistant wheat in the field and source for gene transfer to other wheat lines/species.


Assuntos
Aegilops/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Triticum/genética , Aegilops/metabolismo , Resistência à Doença/genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Triticum/metabolismo
3.
Theor Appl Genet ; 127(11): 2453-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25223542

RESUMO

KEY MESSAGE: Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found. Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.


Assuntos
Basidiomycota , Resistência à Doença/genética , Desequilíbrio de Ligação , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Estudos de Associação Genética , Genótipo , Israel , Modelos Lineares , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
4.
Plant Dis ; 98(10): 1309-1320, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30703930

RESUMO

Widely virulent races of the stem rust pathogen (Puccinia graminis f. sp. tritici) such as those isolated from Africa (e.g., TTKSK, isolate synonym Ug99) threaten wheat production worldwide. To identify Aegilops accessions with effective resistance to such virulent stem rust races, up to 10 different species from Israel were evaluated against African races TTKSK, TTKST, and TTTSK and the Israeli race TTTTC as seedlings in the greenhouse. A wide diversity of stem rust reactions was observed across the Aegilops spp. and ranged from highly resistant (i.e., infection type 0) to highly susceptible (infection type 4). The frequency of resistance within a species to races TTTTC and TTKSK ranged from 7 and 14%, respectively, in Aegilops searsii to 98 and 100% in AE. speltoides. In all, 346 accessions were found resistant to the three African races and 138 accessions were resistant (or heterogeneous with a resistant component) to all four races. The species with broadly resistant accessions included Ae. longissima (59 accessions), Ae. peregrina (47 accessions), Ae. sharonensis (15 accessions), Ae. geniculata (9 accessions), Ae. kotschyi (5 accessions), and Ae. bicornis (3 accessions). Few geographical trends or correlations with climatic variables were observed with respect to stem rust resistance in the Aegilops spp. The exception was Ae. longissima infected with race TTTTC, where a high frequency of resistance was found in central and northern Israel and a very low frequency in southern Israel (Negev desert region). This geographical trend followed a pattern of annual precipitation in Israel, and a significant correlation was found between this variable and resistance in Ae. longissima. Although difficult, it is feasible to transfer resistance genes from Aegilops spp. into wheat through conventional wide-crossing schemes or, alternatively, a cloning and transformation approach. The broadly resistant accessions identified in this study will be valuable in these research programs.

5.
Physiol Plant ; 139(3): 269-79, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20163557

RESUMO

Wild relatives of crop plants may serve as a promising source for screening for new disease resistance genes that can be utilized in breeding programs. Triticum dicoccoides, the wild progenitor of most cultivated wheats, was shown to harbor many resistance genes against the major diseases attacking cultivated wheat. Stripe rust is a devastating fungal disease that attacks wheat in many regions of the world. New races of Puccinia striiformis Westend. f. sp. tritici, the causative agent of stripe rust, have overcome most of the known Yr resistance genes in wheat. Therefore, there is a need to search for new resistance genes in the T. dicoccoides gene pool. A set of 120 T. dicoccoides accessions, collected from 13 populations representing different habitats in Israel and vicinity, was tested for resistance to three prevalent stripe rust races (38E134, 6E16 and 6E0). Of these 120 accessions, 14, 8 and 12% were resistant to races 38E134, 6E16 and 6E0, respectively, while 57, 2 and 4% were moderately resistant to these races, respectively. A unique resistance was found in the population of Mt Hermon where >80% of the accessions showed resistance to all races. Distribution of infection types (ITs) of race 38E134 showed a normal distribution that can fit a quantitative pattern of response, while the distributions of ITs of races 6E16 and 6E0 had excess of extreme values and therefore showing a qualitative pattern of response. anova testing the main factor effects and interaction showed significant effects of population, race and their interaction on IT. Significant positive correlations were obtained between the resistance to races 6E16 and 6E0 and humidity variables of the collections sites, while resistance to race 38E134 was positively correlated with temperature variables. These results show that the pathogen race can determine the type of resistance response, qualitative or quantitative, in the stripe rust-T. dicoccoides pathosystem. The obtained results also reveal that the distribution of resistance to different pathogen races can be affected by different climatic factors.


Assuntos
Basidiomycota/patogenicidade , Imunidade Inata , Doenças das Plantas/microbiologia , Triticum/imunologia , Genes de Plantas , Umidade , Israel , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Temperatura , Triticum/genética , Triticum/microbiologia
6.
Phytopathology ; 94(1): 94-101, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18943825

RESUMO

ABSTRACT A leaf rust attacking Aegilops speltoides in its natural habitat is reported for the first time. It was found in two locations in northern and central Israel. The two collections from A. speltoides resemble wheat leaf rust, Puccinia triticina, in most spore dimensions, in the morphology of the substomatal vesicle of the urediniospore, and in DNA content in pycniospore nuclei. Similarly to P. triticina isolates from wheat, isolates taken from A. speltoides are compatible with Thalictrum speciosissimum as an aecial host and they are crossed easily with wheat leaf rust isolates. However, isolates from A. speltoides differ from wheat leaf rust in their telial host range. They are avirulent to cultivated wheat cultivars, but attack hundreds of A. speltoides accessions that were immune to wheat leaf rust. This distinct host preference justifies delineation of the newly found leaf rust as a forma specialis (f. sp. speltoides) within P. triticina.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA