Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Comput Biol ; 19(7): e1011286, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428809

RESUMO

Understanding the impact of regulatory variants on complex phenotypes is a significant challenge because the genes and pathways that are targeted by such variants and the cell type context in which regulatory variants operate are typically unknown. Cell-type-specific long-range regulatory interactions that occur between a distal regulatory sequence and a gene offer a powerful framework for examining the impact of regulatory variants on complex phenotypes. However, high-resolution maps of such long-range interactions are available only for a handful of cell types. Furthermore, identifying specific gene subnetworks or pathways that are targeted by a set of variants is a significant challenge. We have developed L-HiC-Reg, a Random Forests regression method to predict high-resolution contact counts in new cell types, and a network-based framework to identify candidate cell-type-specific gene networks targeted by a set of variants from a genome-wide association study (GWAS). We applied our approach to predict interactions in 55 Roadmap Epigenomics Mapping Consortium cell types, which we used to interpret regulatory single nucleotide polymorphisms (SNPs) in the NHGRI-EBI GWAS catalogue. Using our approach, we performed an in-depth characterization of fifteen different phenotypes including schizophrenia, coronary artery disease (CAD) and Crohn's disease. We found differentially wired subnetworks consisting of known as well as novel gene targets of regulatory SNPs. Taken together, our compendium of interactions and the associated network-based analysis pipeline leverages long-range regulatory interactions to examine the context-specific impact of regulatory variation in complex phenotypes.


Assuntos
Epigenoma , Estudo de Associação Genômica Ampla , Humanos , Estudo de Associação Genômica Ampla/métodos , Redes Reguladoras de Genes/genética , Genoma , Epigenômica , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
3.
Neuro Oncol ; 23(4): 638-649, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130899

RESUMO

BACKGROUND: Large-scale genome-wide association studies (GWAS) have implicated thousands of germline genetic variants in modulating individuals' risk to various diseases, including cancer. At least 25 risk loci have been identified for low-grade gliomas (LGGs), but their molecular functions remain largely unknown. METHODS: We hypothesized that GWAS loci contain causal single nucleotide polymorphisms (SNPs) that reside in accessible open chromatin regions and modulate the expression of target genes by perturbing the binding affinity of transcription factors (TFs). We performed an integrative analysis of genomic and epigenomic data from The Cancer Genome Atlas and other public repositories to identify candidate causal SNPs within linkage disequilibrium blocks of LGG GWAS loci. We assessed their potential regulatory role via in silico TF binding sequence perturbations, convolutional neural network trained on TF binding data, and simulated annealing-based interpretation methods. RESULTS: We built an interactive website (http://education.knoweng.org/alg3/) summarizing the functional footprinting of 280 variants in 25 LGG GWAS regions, providing rich information for further computational and experimental scrutiny. We identified as case studies PHLDB1 and SLC25A26 as candidate target genes of rs12803321 and rs11706832, respectively, and predicted the GWAS variant rs648044 to be the causal SNP modulating ZBTB16, a known tumor suppressor in multiple cancers. We showed that rs648044 likely perturbed the binding affinity of the TF MAFF, as supported by RNA interference and in vitro MAFF binding experiments. CONCLUSIONS: The identified candidate (causal SNP, target gene, TF) triplets and the accompanying resource will help accelerate our understanding of the molecular mechanisms underlying genetic risk factors for gliomas.


Assuntos
Estudo de Associação Genômica Ampla , Glioma , Sistemas de Transporte de Aminoácidos , Proteínas de Ligação ao Cálcio , Predisposição Genética para Doença , Glioma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Genet ; 11: 730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765587

RESUMO

Over the past decade, hundreds of genome-wide association studies (GWAS) have implicated genetic variants in various diseases, including cancer. However, only a few of these variants have been functionally characterized to date, mainly because the majority of the variants reside in non-coding regions of the human genome with unknown function. A comprehensive functional annotation of the candidate variants is thus necessary to fill the gap between the correlative findings of GWAS and the development of therapeutic strategies. By integrating large-scale multi-omics datasets such as the Cancer Genome Atlas (TCGA) and the Encyclopedia of DNA Elements (ENCODE), we performed multivariate linear regression analysis of expression quantitative trait loci, sequence permutation test of transcription factor binding perturbation, and modeling of three-dimensional chromatin interactions to analyze the potential molecular functions of 2,813 single nucleotide variants in 93 genomic loci associated with estrogen receptor-positive breast cancer. To facilitate rapid progress in functional genomics of breast cancer, we have created "Analysis of Breast Cancer GWAS" (ABC-GWAS), an interactive database of functional annotation of estrogen receptor-positive breast cancer GWAS variants. Our resource includes expression quantitative trait loci, long-range chromatin interaction predictions, and transcription factor binding motif analyses to prioritize putative target genes, causal variants, and transcription factors. An embedded genome browser also facilitates convenient visualization of the GWAS loci in genomic and epigenomic context. ABC-GWAS provides an interactive visual summary of comprehensive functional characterization of estrogen receptor-positive breast cancer variants. The web resource will be useful to both computational and experimental biologists who wish to generate and test their hypotheses regarding the genetic susceptibility, etiology, and carcinogenesis of breast cancer. ABC-GWAS can also be used as a user-friendly educational resource for teaching functional genomics. ABC-GWAS is available at http://education.knoweng.org/abc-gwas/.

5.
Front Genet ; 10: 754, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507631

RESUMO

Genome-wide association studies (GWAS) have hitherto identified several germline variants associated with cancer susceptibility, but the molecular functions of these risk modulators remain largely uncharacterized. Recent studies have begun to uncover the regulatory potential of noncoding GWAS SNPs using epigenetic information in corresponding cancer cell types and matched normal tissues. However, this approach does not explore the potential effect of risk germline variants on other important cell types that constitute the microenvironment of tumor or its precursor. This paper presents evidence that the breast-cancer-associated variant rs3903072 may regulate the expression of CTSW in tumor-infiltrating lymphocytes. CTSW is a candidate tumor-suppressor gene, with expression highly specific to immune cells and also positively correlated with breast cancer patient survival. Integrative analyses suggest a putative causative variant in a GWAS-linked enhancer in lymphocytes that loops to the 3' end of CTSW through three-dimensional chromatin interaction. Our work thus poses the possibility that a cancer-associated genetic variant could regulate a gene not only in the cell of cancer origin but also in immune cells in the microenvironment, thereby modulating the immune surveillance by T lymphocytes and natural killer cells and affecting the clearing of early cancer initiating cells.

6.
Bioinformatics ; 35(8): 1438-1440, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30202870

RESUMO

SUMMARY: Next-generation sequencing (NGS) techniques are revolutionizing biomedical research by providing powerful methods for generating genomic and epigenomic profiles. The rapid progress is posing an acute challenge to students and researchers to stay acquainted with the numerous available methods. We have developed an interactive online educational resource called Sequencing Techniques Engine for Genomics (SequencEnG) to provide a tree-structured knowledge base of 66 different sequencing techniques and step-by-step NGS data analysis pipelines comparing popular tools. SequencEnG is designed to facilitate barrier-free learning of current NGS techniques and provides a user-friendly interface for searching through experimental and analysis methods. AVAILABILITY AND IMPLEMENTATION: SequencEnG is part of the project Knowledge Engine for Genomics (KnowEnG) and is freely available at http://education.knoweng.org/sequenceng/.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Bases de Conhecimento , Software
7.
Cancer Res ; 78(7): 1579-1591, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351903

RESUMO

Previous genome-wide association studies (GWAS) have identified several common genetic variants that may significantly modulate cancer susceptibility. However, the precise molecular mechanisms behind these associations remain largely unknown; it is often not clear whether discovered variants are themselves functional or merely genetically linked to other functional variants. Here, we provide an integrated method for identifying functional regulatory variants associated with cancer and their target genes by combining analyses of expression quantitative trait loci, a modified version of allele-specific expression that systematically utilizes haplotype information, transcription factor (TF)-binding preference, and epigenetic information. Application of our method to a breast cancer susceptibility region in 5p12 demonstrates that the risk allele rs4415084-T correlates with higher expression levels of the protein-coding gene mitochondrial ribosomal protein S30 (MRPS30) and lncRNA RP11-53O19.1 We propose an intergenic SNP rs4321755, in linkage disequilibrium (LD) with the GWAS SNP rs4415084 (r2 = 0.988), to be the predicted functional SNP. The risk allele rs4321755-T, in phase with the GWAS rs4415084-T, created a GATA3-binding motif within an enhancer, resulting in differential GATA3 binding and chromatin accessibility, thereby promoting transcription of MRPS30 and RP11-53O19.1. MRPS30 encodes a member of the mitochondrial ribosomal proteins, implicating the role of risk SNP in modulating mitochondrial activities in breast cancer. Our computational framework provides an effective means to integrate GWAS results with high-throughput genomic and epigenomic data and can be extended to facilitate rapid functional characterization of other genetic variants modulating cancer susceptibility.Significance: Unification of GWAS results with information from high-throughput genomic and epigenomic profiles provides a direct link between common genetic variants and measurable molecular perturbations. Cancer Res; 78(7); 1579-91. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Cromossomos Humanos Par 5/genética , Fator de Transcrição GATA3/metabolismo , Proteínas Mitocondriais/genética , RNA Longo não Codificante/genética , Proteínas Ribossômicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Mitocondriais/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , RNA Longo não Codificante/biossíntese , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Ribossômicas/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-30906871

RESUMO

SUMMARY: Clustering is one of the most common techniques used in data analysis to discover hidden structures by grouping together data points that are similar in some measure into clusters. Although there are many programs available for performing clustering, a single web resource that provides both state-of-the-art clustering methods and interactive visualizations is lacking. ClusterEnG (acronym for Clustering Engine for Genomics) provides an interface for clustering big data and interactive visualizations including 3D views, cluster selection and zoom features. ClusterEnG also aims at educating the user about the similarities and differences between various clustering algorithms and provides clustering tutorials that demonstrate potential pitfalls of each algorithm. The web resource will be particularly useful to scientists who are not conversant with computing but want to understand the structure of their data in an intuitive manner. AVAILABILITY: ClusterEnG is part of a bigger project called KnowEnG (Knowledge Engine for Genomics) and is available at http://education.knoweng.org/clustereng. CONTACT: songi@illinois.edu.

9.
Artigo em Inglês | MEDLINE | ID: mdl-25314439

RESUMO

Uniform planar impact on a two-dimensional square packing of spheres with intruders at interstitial locations is investigated. An equivalent one-dimensional granular chain model is proposed with appropriate scaling and is verified numerically. Numerical observations demonstrate the existence of a new family of plane solitary waves with different profiles at unique combinations of material properties. In particular, a special case of a solitary wave whose profile is similar to that of the homogeneous chains is also reported. Material combinations that cause solitary waves are systematically extracted for a wide range of material properties. For the solitary wave similar to that of a homogeneous chain, a quasicontinuum approximation is employed to predict the shape and width of the solitary wave, showing good agreement with the numerical results. Finally, an asymptotic analysis is conducted to predict the solitary wave solutions.


Assuntos
Dimerização , Modelos Moleculares , Elasticidade , Conformação Molecular , Movimento (Física)
10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 1): 031308, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587093

RESUMO

The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation.


Assuntos
Coloides/química , Modelos Químicos , Modelos Moleculares , Modelos Estatísticos , Nanosferas/química , Polímeros/química , Simulação por Computador , Nanosferas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA