Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 7185-7196, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439406

RESUMO

We propose and analyze theoretically a promising design of an optical trap for vacuum levitation of nanoparticles based on a one-dimensional (1D) silicon photonic crystal cavity (PhC). The considered cavity has a quadratically modulated width of the silicon wave guiding structure, leading to a calculated cavity quality factor of 8 × 105. An effective mode volume of approximately 0.16 µm3 having the optical field strongly confined outside the silicon structure enables optical confinement on nanoparticle in all three dimensions. The optical forces and particle-cavity optomechanical coupling are comprehensively analyzed for two sizes of silica nanoparticles (100 nm and 150 nm in diameter) and various mode detunings. The value of trapping stiffnesses in the microcavity is predicted to be 5 order of magnitudes higher than that reached for optimized optical tweezers, moreover the linear single photon coupling rate can reach MHz level which is 6 order magnitude larger than previously reported values for common bulk cavities. The theoretical results support optimistic prospects towards a compact chip for optical levitation in vacuum and cooling of translational mechanical degrees of motion for the silica nanoparticle of a diameter of 100 nm.

2.
Anal Chem ; 92(18): 12304-12311, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32815709

RESUMO

Bacteriophages, or "phages" for short, are viruses that replicate in bacteria. The therapeutic and biotechnological potential of phages and their lytic enzymes is of interest for their ability to selectively destroy pathogenic bacteria, including antibiotic-resistant strains. Introduction of phage preparations into medicine, biotechnology, and food industry requires a thorough characterization of phage-host interaction on a molecular level. We employed Raman tweezers to analyze the phage-host interaction of Staphylococcus aureus strain FS159 with a virulent phage JK2 (=812K1/420) of the Myoviridae family and a temperate phage 80α of the Siphoviridae family. We analyzed the timeline of phage-induced molecular changes in infected host cells. We reliably detected the presence of replicating phages in bacterial cells within 5 min after infection. Our results lay the foundations for building a Raman-based diagnostic instrument capable of real-time, in vivo, in situ, nondestructive characterization of the phage-host relationship on the level of individual cells, which has the potential of importantly contributing to the development of phage therapy and enzybiotics.


Assuntos
Bacteriófagos/química , Pinças Ópticas , Staphylococcus aureus/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA