Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 29(7): 1952-62, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26176715

RESUMO

Development of physiologically relevant test methods to analyse potential irritant effects to the respiratory tract caused by e-cigarette aerosols is required. This paper reports the method development and optimisation of an acute in vitro MTT cytotoxicity assay using human 3D reconstructed airway tissues and an aerosol exposure system. The EpiAirway™ tissue is a highly differentiated in vitro human airway culture derived from primary human tracheal/bronchial epithelial cells grown at the air-liquid interface, which can be exposed to aerosols generated by the VITROCELL® smoking robot. Method development was supported by understanding the compatibility of these tissues within the VITROCELL® system, in terms of airflow (L/min), vacuum rate (mL/min) and exposure time. Dosimetry tools (QCM) were used to measure deposited mass, to confirm the provision of e-cigarette aerosol to the tissues. EpiAirway™ tissues were exposed to cigarette smoke and aerosol generated from two commercial e-cigarettes for up to 6 h. Cigarette smoke reduced cell viability in a time dependent manner to 12% at 6 h. E-cigarette aerosol showed no such decrease in cell viability and displayed similar results to that of the untreated air controls. Applicability of the EpiAirway™ model and exposure system was demonstrated, showing little cytotoxicity from e-cigarette aerosol and different aerosol formulations when compared directly with reference cigarette smoke, over the same exposure time.


Assuntos
Aerossóis/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Irritantes/toxicidade , Brônquios/citologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Produtos do Tabaco/toxicidade , Testes de Toxicidade , Traqueia/citologia
2.
PLoS One ; 10(2): e0118286, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706956

RESUMO

OBJECTIVES: Human airway epithelial cells are the principal target of human rhinovirus (HRV), a common cold pathogen that triggers the majority of asthma exacerbations. The objectives of this study were 1) to evaluate an in vitro air liquid interface cultured human airway epithelial cell model for HRV infection, and 2) to identify gene expression patterns associated with asthma intrinsically and/or after HRV infection using this model. METHODS: Air-liquid interface (ALI) human airway epithelial cell cultures were prepared from 6 asthmatic and 6 non-asthmatic donors. The effects of rhinovirus RV-A16 on ALI cultures were compared. Genome-wide gene expression changes in ALI cultures following HRV infection at 24 hours post exposure were further analyzed using RNA-seq technology. Cellular gene expression and cytokine/chemokine secretion were further evaluated by qPCR and a Luminex-based protein assay, respectively. MAIN RESULTS: ALI cultures were readily infected by HRV. RNA-seq analysis of HRV infected ALI cultures identified sets of genes associated with asthma specific viral responses. These genes are related to inflammatory pathways, epithelial structure and remodeling and cilium assembly and function, including those described previously (e.g. CCL5, CXCL10 and CX3CL1, MUC5AC, CDHR3), and novel ones that were identified for the first time in this study (e.g. CCRL1). CONCLUSIONS: ALI-cultured human airway epithelial cells challenged with HRV are a useful translational model for the study of HRV-induced responses in airway epithelial cells, given that gene expression profile using this model largely recapitulates some important patterns of gene responses in patients during clinical HRV infection. Furthermore, our data emphasize that both abnormal airway epithelial structure and inflammatory signaling are two important asthma signatures, which can be further exacerbated by HRV infection.


Assuntos
Asma/genética , Asma/virologia , Diferenciação Celular/genética , Células Epiteliais/virologia , Infecções por Picornaviridae/genética , Sistema Respiratório/virologia , Adolescente , Adulto , Células Cultivadas , Quimiocinas/genética , Criança , Feminino , Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/virologia , Masculino , Pessoa de Meia-Idade , Infecções por Picornaviridae/virologia , Rhinovirus , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 110(47): 18946-51, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24158479

RESUMO

Smoking is a significant risk factor for lung cancer, the leading cause of cancer-related deaths worldwide. Although microRNAs are regulators of many airway gene-expression changes induced by smoking, their role in modulating changes associated with lung cancer in these cells remains unknown. Here, we use next-generation sequencing of small RNAs in the airway to identify microRNA 4423 (miR-4423) as a primate-specific microRNA associated with lung cancer and expressed primarily in mucociliary epithelium. The endogenous expression of miR-4423 increases as bronchial epithelial cells undergo differentiation into mucociliary epithelium in vitro, and its overexpression during this process causes an increase in the number of ciliated cells. Furthermore, expression of miR-4423 is reduced in most lung tumors and in cytologically normal epithelium of the mainstem bronchus of smokers with lung cancer. In addition, ectopic expression of miR-4423 in a subset of lung cancer cell lines reduces their anchorage-independent growth and significantly decreases the size of the tumors formed in a mouse xenograft model. Consistent with these phenotypes, overexpression of miR-4423 induces a differentiated-like pattern of airway epithelium gene expression and reverses the expression of many genes that are altered in lung cancer. Together, our results indicate that miR-4423 is a regulator of airway epithelium differentiation and that the abrogation of its function contributes to lung carcinogenesis.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Diferenciação Celular/fisiologia , Neoplasias Pulmonares/diagnóstico , MicroRNAs/metabolismo , Mucosa Respiratória/citologia , Animais , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/genética , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/metabolismo
4.
Mol Vis ; 18: 128-38, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22275804

RESUMO

PURPOSE: Previously, the authors demonstrated that the lack of the P2X(7) receptor impairs epithelial wound healing and stromal collagen organization in the cornea. The goal here is to characterize specific effects of the P2X(7) receptor on components of the corneal stroma extracellular matrix. METHODS: Unwounded corneas from P2X(7) knockout mice (P2X(7) (-/-)) and C57BL/6J wild type mice (WT) were fixed and prepared for quantitative and qualitative analysis of protein expression and localization using Real Time PCR and immunohistochemistry. Corneas were stained also with Cuprolinic blue for electron microscopy to quantify proteoglycan sulfation in the stroma. RESULTS: P2X(7) (-/-) mice showed decreased mRNA expression in the major components of the corneal stroma: collagen types I and V and small leucine-rich proteoglycans decorin, keratocan, and lumican. In contrast P2X(7) (-/-) mice showed increased mRNA expression in lysyl oxidase and biglycan. Additionally, we observed increases in syndecan 1, perlecan, and type III collagen. There was a loss of perlecan along the basement membrane and enhanced expression throughout the stroma, in contrast with the decreased localization of other proteoglycans throughout the stroma. In the absence of lyase digestion there was a significantly smaller number of proteoglycan units per 100 nm of collagen fibrils in the P2X(7) (-/-) compared to WT mice. While digestion was more pronounced in the WT group, double digestion with Keratanase I and Chondroitinase ABC removed 88% of the GAG filaments in the WT, compared to 72% of those in the P2X(7) (-/-) mice, indicating that there are more heparan sulfate proteoglycans in the latter. CONCLUSIONS: Our results indicate that loss of P2X(7) alters both the expression of proteins and the sulfation of proteoglycans in the corneal stroma.


Assuntos
Substância Própria/metabolismo , Proteoglicanas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Substância Própria/citologia , Substância Própria/ultraestrutura , Decorina/metabolismo , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/ultraestrutura , Regulação da Expressão Gênica , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Sulfato de Queratano/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/genética
5.
PLoS One ; 6(12): e28541, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163032

RESUMO

Improper wound repair of the corneal epithelium can alter refraction of light resulting in impaired vision. We have shown that ATP is released after injury, activates purinergic receptor signaling pathways and plays a major role in wound closure. In many cells or tissues, ATP activates P2X(7) receptors leading to cation fluxes and cytotoxicity. The corneal epithelium is an excellent model to study the expression of both the full-length P2X(7) form (defined as the canonical receptor) and its truncated forms. When Ca(2+) mobilization is induced by BzATP, a P2X(7) agonist, it is attenuated in the presence of extracellular Mg(2+) or Zn(2+), negligible in the absence of extracellular Ca(2+), and inhibited by the competitive P2X7 receptor inhibitor, A438079. BzATP enhanced phosphorylation of ERK. Together these responses indicate the presence of a canonical or full-length P2X(7) receptor. In addition BzATP enhanced epithelial cell migration, and transfection with siRNA to the P2X(7) receptor reduced cell migration. Furthermore, sustained activation did not induce dye uptake indicating the presence of truncated or variant forms that lack the ability to form large pores. Reverse transcription-polymerase chain reaction and Northern blot analysis revealed a P2X(7) splice variant. Western blots identified a full-length and truncated form, and the expression pattern changed as cultures progressed from monolayer to stratified. Cross-linking gels demonstrated the presence of homo- and heterotrimers. We examined epithelium from age matched diabetic and non-diabetic corneas patients and detected a 4-fold increase in P2X(7) mRNA from diabetic corneal epithelium compared to non-diabetic controls and an increased trend in expression of P2X(7)variant mRNA. Taken together, these data indicate that corneal epithelial cells express full-length and truncated forms of P2X(7), which ultimately allows P2X(7) to function as a multifaceted receptor that can mediate cell proliferation and migration or cell death.


Assuntos
Córnea/metabolismo , Epitélio/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Receptores Purinérgicos P2X7/biossíntese , Tetrazóis/farmacologia , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Proliferação de Células , Quimiotaxia , Córnea/citologia , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Células Epiteliais/citologia , Humanos , Queratinócitos/citologia , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...