Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6635, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103374

RESUMO

The bacterial tight adherence pilus system (TadPS) assembles surface pili essential for adhesion and colonisation in many human pathogens. Pilus dynamics are powered by the ATPase CpaF (TadA), which drives extension and retraction cycles in Caulobacter crescentus through an unknown mechanism. Here we use cryogenic electron microscopy and cell-based light microscopy to characterise CpaF mechanism. We show that CpaF assembles into a hexamer with C2 symmetry in different nucleotide states. Nucleotide cycling occurs through an intra-subunit clamp-like mechanism that promotes sequential conformational changes between subunits. Moreover, a comparison of the active sites with different nucleotides bound suggests a mechanism for bidirectional motion. Conserved CpaF residues, predicted to interact with platform proteins CpaG (TadB) and CpaH (TadC), are mutated in vivo to establish their role in pilus processing. Our findings provide a model for how CpaF drives TadPS pilus dynamics and have broad implications for how other ancient type 4 filament family members power pilus assembly.


Assuntos
Proteínas de Bactérias , Caulobacter crescentus , Fímbrias Bacterianas , Fímbrias Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Caulobacter crescentus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Microscopia Crioeletrônica , Adenosina Trifosfatases/metabolismo , Aderência Bacteriana/fisiologia , Nucleotídeos/metabolismo , Modelos Moleculares
2.
FEBS J ; 288(19): 5708-5722, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33792206

RESUMO

Evolutionary robustness requires that the number of highly conserved amino acid residues in proteins is minimized. In enzymes, such conservation is observed for catalytic residues but also for some residues in the second shell or even further from the active site. ß-Lactamases evolve in response to changing antibiotic selection pressures and are thus expected to be evolutionarily robust, with a limited number of highly conserved amino acid residues. As part of the effort to understand the roles of conserved residues in class A ß-lactamases, we investigate the reasons leading to the conservation of two amino acid residues in the ß-lactamase BlaC, Glu37, and Trp229. Using site-directed mutagenesis, we have generated point mutations of these residues and observed a drastic decrease in the levels of soluble protein produced in Escherichia coli, thus abolishing completely the resistance of bacteria against ß-lactam antibiotics. However, the purified proteins are structurally and kinetically very similar to the wild-type enzyme, only differing by exhibiting a slightly lower melting temperature. We conclude that conservation of Glu37 and Trp229 is solely caused by an essential role in the folding process, and we propose that during folding Glu37 primes the formation of the central ß-sheet and Trp229 contributes to the hydrophobic collapse into a molten globule. ENZYME: EC 3.5.2.6. DATABASE: Structural data are available in PDB database under the accession number 7A5U.


Assuntos
Farmacorresistência Bacteriana/genética , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , beta-Lactamases/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Antibacterianos/efeitos adversos , Antibacterianos/química , Antibacterianos/uso terapêutico , Domínio Catalítico/genética , Sequência Conservada/genética , Escherichia coli/química , Escherichia coli/enzimologia , Humanos , Cinética , Mutagênese Sítio-Dirigida , beta-Lactamases/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA