Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(11): e2203237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683305

RESUMO

Advanced nerve guidance conduits can provide an off-the-shelf alternative to autografts for the rehabilitation of segmental peripheral nerve injuries. In this study, the excellent processing ability of silk fibroin and the outstanding cell adhesion quality of spider dragline silk are combined to generate a silk-in-silk conduit for nerve repair. Fibroin-based silk conduits (SC) are characterized, and Schwann cells are seeded on the conduits and spider silk. Rat sciatic nerve (10 mm) defects are treated with an autograft (A), an empty SC, or a SC filled with longitudinally aligned spider silk fibers (SSC) for 14 weeks. Functional recovery, axonal re-growth, and re-myelination are assessed. The material characterizations determine a porous nature of the conduit. Schwann cells accept the conduit and spider silk as growth substrate. The in vivo results show a significantly faster functional regeneration of the A and SSC group compared to the SC group. In line with the functional results, the histomorphometrical analysis determines a comparable axon density of the A and SSC groups, which is significantly higher than the SC group. These findings demonstrate that the here introduced silk-in-silk nerve conduit achieves a similar regenerative performance as autografts largely due to the favorable guiding properties of spider dragline silk.


Assuntos
Fibroínas , Traumatismos dos Nervos Periféricos , Ratos , Animais , Seda/farmacologia , Seda/química , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático/fisiologia , Células de Schwann , Fibroínas/farmacologia , Fibroínas/química , Regeneração Nervosa/fisiologia
2.
Front Cell Neurosci ; 16: 859545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418835

RESUMO

Functional recovery from peripheral nerve injuries depends on a multitude of factors. Schwann cells (SCs) are key players in the regenerative process as they develop repair-specific functions to promote axon regrowth. However, chronically denervated SCs lose their repair phenotype, which is considered as a main reason for regeneration failure. Previous studies reported a modulatory effect of low nuclear magnetic resonance therapy (NMRT) on cell proliferation and gene expression. To provide first insight into a possible effect of NMRT on cells involved in peripheral nerve regeneration, this study investigated whether NMRT is able to influence the cellular behavior of primary SC and dorsal root ganglion (DRG) neuron cultures in vitro. The effect of NMRT on rat SCs was evaluated by comparing the morphology, purity, proliferation rate, and expression levels of (repair) SC associated genes between NMRT treated and untreated SC cultures. In addition, the influence of (1) NMRT and (2) medium obtained from NMRT treated SC cultures on rat DRG neuron regeneration was examined by analyzing neurite outgrowth and the neuronal differentiation status. Our results showed that NMRT stimulated the proliferation of SCs without changing their morphology, purity, or expression of (repair) SC associated markers. Furthermore, NMRT promoted DRG neuron regeneration shown by an increased cell survival, enhanced neurite network formation, and progressed neuronal differentiation status. Furthermore, the medium of NMRT treated SC cultures was sufficient to support DRG neuron survival and neurite outgrowth. These findings demonstrate a beneficial impact of NMRT on DRG neuron survival and neurite formation, which is primarily mediated via SC stimulation. Our data suggest that NMRT could be suitable as a non-invasive auxiliary treatment option for peripheral nerve injuries and encourage future studies that investigate the effect of NMRT in a physiological context.

3.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073090

RESUMO

Nuclear magnetic resonance therapy (NMRT) is discussed as a participant in repair processes regarding cartilage and as an influence in pain signaling. To substantiate the application of NMRT, the underlying mechanisms at the cellular level were studied. In this study microRNA (miR) was extracted from human primary healthy and osteoarthritis (OA) chondrocytes after NMR treatment and was sequenced by the Ion PI Hi-Q™ Sequencing 200 system. In addition, T/C-28a2 chondrocytes grown under hypoxic conditions were studied for IL-1ß induced changes in expression on RNA and protein level. HDAC activity an NAD(+)/NADH was measured by luminescence detection. In OA chondrocytes miR-106a, miR-27a, miR-34b, miR-365a and miR-424 were downregulated. This downregulation was reversed by NMRT. miR-365a-5p is known to directly target HDAC and NF-ĸB, and a decrease in HDAC activity by NMRT was detected. NAD+/NADH was reduced by NMR treatment in OA chondrocytes. Under hypoxic conditions NMRT changed the expression profile of HIF1, HIF2, IGF2, MMP3, MMP13, and RUNX1. We conclude that NMRT changes the miR profile and modulates the HDAC and the NAD(+)/NADH signaling in human chondrocytes. These findings underline once more that NMRT counteracts IL-1ß induced changes by reducing catabolic effects, thereby decreasing inflammatory mechanisms under OA by changing NF-ĸB signaling.


Assuntos
Condrócitos , Espectroscopia de Ressonância Magnética/métodos , MicroRNAs/metabolismo , Osteoartrite , Linhagem Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Osteoartrite/metabolismo , Osteoartrite/terapia , Cultura Primária de Células
4.
FASEB J ; 35(2): e21196, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210360

RESUMO

The search for a suitable material to promote regeneration after long-distance peripheral nerve defects turned the spotlight on spider silk. Nerve conduits enriched with native spider silk fibers as internal guiding structures previously demonstrated a regenerative outcome similar to autologous nerve grafts in animal studies. Nevertheless, spider silk is a natural material with associated limitations for clinical use. A promising alternative is the production of recombinant silk fibers that should mimic the outstanding properties of their native counterpart. However, in vitro data on the regenerative features that native silk fibers provide for cells involved in nerve regeneration are scarce. Thus, there is a lack of reference parameters to evaluate whether recombinant silk fiber candidates will be eligible for nerve repair in vivo. To gain insight into the regenerative effect of native spider silk, our study aims to define the behavioral response of primary Schwann cells (SCs), nerve-associated fibroblasts (FBs), and dorsal root ganglion (DRG) neurons cultured on native dragline silk from the genus Nephila and on laminin coated dishes. The established multi-color immunostaining panels together with confocal microscopy and live cell imaging enabled the analysis of cell identity, morphology, proliferation, and migration on both substrates in detail. Our findings demonstrated that native spider silk rivals laminin coating as it allowed attachment and proliferation and supported the characteristic behavior of all tested cell types. Axonal out-growth of DRG neurons occurred along longitudinally aligned SCs that formed sustained bundled structures resembling Bungner bands present in regenerating nerves. The migration of SCs along the silk fibers achieved the reported distance of regenerating axons of about 1 mm per day, but lacked directionality. Furthermore, rFBs significantly reduced the velocity of rSCs in co-cultures on silk fibers. In summary, this study (a) reveals features recombinant silk must possess and what modifications or combinations could be useful for enhanced nerve repair and (b) provides assays to evaluate the regenerative performance of silk fibers in vitro before being applied as internal guiding structure in nerve conduits in vivo.


Assuntos
Fibroblastos/efeitos dos fármacos , Regeneração Nervosa , Células de Schwann/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Seda/farmacologia , Animais , Movimento Celular , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Masculino , Crescimento Neuronal , Ratos , Ratos Sprague-Dawley , Células de Schwann/fisiologia , Células Receptoras Sensoriais/fisiologia , Aranhas
5.
Mater Sci Eng C Mater Biol Appl ; 116: 111219, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806225

RESUMO

The successful reconstruction of supercritical peripheral nerve injuries remains a major challenge in modern medicine. Progress in tissue engineering has enabled the development of nerve guidance conduits as an alternative to autologous nerve transplantation and the enrichment of conduits with fibrous materials or hydrogels has shown great potential in bridging nerve defects. The application of the dragline silk of spider genus Nephila as a filament for nerve guidance conduits has led to promising results. However, the use of spider silk has been phenomenological so far and the reasons for its success are still not identified. This renders a targeted tuning of synthetic fibrous luminal fillings such as recombinant silk out of reach. In this work the existing research was extended and in addition to dragline, the cocoon silk of Nephila edulis, as well as the connecting and attaching silk of Avicularia avicularia were investigated. Scanning electron microscopy revealed a difference in size and morphology of the spider silks. However, in vitro experiments indicated that Schwann cells adhere to the four fibers, independent of these two attributes. Raman spectroscopy in native state and aqueous environment demonstrated similar secondary protein structures for dragline, cocoon, and connecting silk. In contrast, the attaching silk showed a significant lower conformation of ß-sheets, crucial for the stiffness of the silk. This was in line with the in vitro experiments, where the flexible attaching silk fibers adhered to each other when placed in liquid. This resulted in their inability to guide Schwann cells, leading to the generation of cell agglomerations. This direct comparison demonstrated the crucial role of ß-sheets conformation for the guidance properties of natural spider silk, providing essential insights into the necessary material properties for the integration of fibrous luminal fillings in nerve guidance conduits.


Assuntos
Tecido Nervoso , Aranhas , Animais , Estrutura Secundária de Proteína , Células de Schwann , Seda , Engenharia Tecidual
6.
PLoS One ; 15(5): e0233647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32442229

RESUMO

In response to injury, adult Schwann cells (SCs) re-enter the cell cycle, change their expression profile, and exert repair functions important for wound healing and the re-growth of axons. While this phenotypical instability of SCs is essential for nerve regeneration, it has also been implicated in cancer progression and de-myelinating neuropathies. Thus, SCs became an important research tool to study the molecular mechanisms involved in repair and disease and to identify targets for therapeutic intervention. A high purity of isolated SC cultures used for experimentation must be demonstrated to exclude that novel findings are derived from a contaminating fibroblasts population. In addition, information about the SC proliferation status is an important parameter to be determined in response to different treatments. The evaluation of SC purity and proliferation, however, usually depends on the time consuming, manual assessment of immunofluorescence stainings or comes with the sacrifice of a large amount of SCs for flow cytometry analysis. We here show that rat SC culture derived cytospins stained for SC marker SOX10, proliferation marker EdU, intermediate filament vimentin and DAPI allowed the determination of SC identity and proliferation by requiring only a small number of cells. Furthermore, the CellProfiler software was used to develop an automated image analysis pipeline that quantified SCs and proliferating SCs from the obtained immunofluorescence images. By comparing the results of total cell count, SC purity and SC proliferation rate between manual counting and the CellProfiler output, we demonstrated applicability and reliability of the established pipeline. In conclusion, we here combined the cytospin technique, a multi-colour immunofluorescence staining panel, and an automated image analysis pipeline to enable the quantification of SC purity and SC proliferation from small cell aliquots. This procedure represents a solid read-out to simplify and standardize the quantification of primary SC culture purity and proliferation.


Assuntos
Células de Schwann/citologia , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Ratos , Ratos Sprague-Dawley
7.
Cells ; 9(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936601

RESUMO

Recent studies showed a beneficial effect of adipose stem cell-derived extracellular vesicles (ADSC-EVs) on sciatic nerve repair, presumably through Schwann cell (SC) modulation. However, it has not yet been elucidated whether ADSC-EVs exert this supportive effect on SCs by extracellular receptor binding, fusion to the SC membrane, or endocytosis mediated internalization. ADSCs, ADSC-EVs, and SCs were isolated from rats and characterized according to associated marker expression and properties. The proliferation rate of SCs in response to ADSC-EVs was determined using a multicolor immunofluorescence staining panel followed by automated image analysis. SCs treated with ADSC-EVs and silica beads were further investigated by 3-D high resolution confocal microscopy and live cell imaging. Our findings demonstrated that ADSC-EVs significantly enhanced the proliferation of SCs in a time- and dose-dependent manner. 3-D image analysis revealed a perinuclear location of ADSC-EVs and their accumulation in vesicular-like structures within the SC cytoplasm. Upon comparing intracellular localization patterns of silica beads and ADSC-EVs in SCs, we found striking resemblance in size and distribution. Live cell imaging visualized that the uptake of ADSC-EVs preferentially took place at the SC processes from which the EVs were transported towards the nucleus. This study provided first evidence for an endocytosis mediated internalization of ADSC-EVs by SCs and underlines the therapeutic potential of ADSC-EVs in future approaches for nerve regeneration.


Assuntos
Tecido Adiposo/citologia , Endocitose , Vesículas Extracelulares/metabolismo , Células de Schwann/citologia , Células-Tronco/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Células-Tronco/citologia
8.
Cell Signal ; 56: 23-30, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30583016

RESUMO

BACKGROUND: Progression of osteoarthritis (OA) is characterized by an excessive production of matrix degrading enzymes and insufficient matrix repair. Despite of active research in this area, it is still unclear how the combination of mechanical exposure and drug therapy works. This study was done to explore the impact of the disease modifying OA drug (DMOAD) diacerein and moderate tensile strain on the anabolic metabolism and the integrin-FAK-MAPKs signal transduction cascade of OA and non-OA chondrocytes. METHODS: Cyclic tensile strain was applied in terms of three different intensities by the Flexcell tension system. Influence on catabolic parameters such as MMPs, ADAMTS, and IL-6 were assessed by qPCR. Changes in phosphorylation of FAK, STAT3 as well as MAP kinases were verified by western blot analysis. Intracellular calcium was measured fluorimetrically using fura-2. RESULTS: Tensile strain at moderate intensity (SM/SA profile) proved to be most efficient in terms of reducing production of matrix degrading enzyme and IL-6 expression. Treatment with diacerein by itself and diacerein in combination with SM/SA stimulation reduced phosphorylation of FAK and STAT3, which is more pronounced in OA cells. Pretreatment with diacerein for 7 days resulted in an increase in the sensitivity to Yoda1, the agonist for the mechanically activated ion channel Piezo1. However, in OA chondrocytes a significant reduction in Piezo1 expression was observed following treatment with diacerein. CONCLUSION: Our results demonstrated for the first time that diacerein intensively intervenes in the regulation of FAK and STAT3 and influences components considered relevant for the progression of OA, even in the presence of mechanical stimulation.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Mecanotransdução Celular/fisiologia , Osteoartrite/patologia , Fator de Transcrição STAT3/metabolismo , Proteínas ADAMTS/metabolismo , Linhagem Celular , Condrócitos/patologia , Endopeptidases/metabolismo , Humanos , Interleucina-6/metabolismo , Canais Iônicos/biossíntese , Metaloproteinases da Matriz/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Estresse Fisiológico/fisiologia , Tioléster Hidrolases/metabolismo
9.
Int J Mol Sci ; 20(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586946

RESUMO

Fast recovery is crucial for a successful nerve repair and an optimal functional outcome after peripheral nerve injury. Regarding donor site morbidity, autologous transplantation shows great limitations, which urge the need for alternative options in nerve reconstruction. Spider silk was reported as an advantageous material for cell adhesion, migration and proliferation, and its use in conduits is of great interest, especially in combination with cells to improve nerve regeneration. We here described the behavior of a co-culture of human Schwann cells and human adipose-derived stem cells (ADSCs) on spider silk as a new approach. After characterized by immunostaining ADSCs and Schwann cells were seeded in the co-culture on a spider silk scaffold and observed for 21 days. Results showed that cells were attached to the silk and aligned along the silk fibers. With further culture time, cells migrated along the silk and increased in number and formed an almost confluent cell layer. In immunostaining, results suggest that the cell layer was equally composed of ADSCs and Schwann cells. In conclusion, we showed that by providing a guiding structure for directed growth and cells to support nerve regeneration and remyelination, a valid alternative to autologous nerve grafts could have been found.


Assuntos
Regeneração Nervosa/fisiologia , Células de Schwann/citologia , Seda/química , Células-Tronco/citologia , Tecido Adiposo/citologia , Animais , Células Cultivadas , Técnicas de Cocultura , Humanos , Laminina/química , Polilisina/química , Medicina Regenerativa , Células de Schwann/metabolismo , Aranhas/metabolismo , Células-Tronco/metabolismo , Alicerces Teciduais/química
10.
Clin Exp Rheumatol ; 36(2): 294-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29185963

RESUMO

OBJECTIVES: Osteoarthritis as the main chronic joint disease is characterised by the destruction of articular cartilage. Developing new, more effective and in particular non-invasive methods to achieve pain reduction of OA patients are of exceptional interest. Clinical observations demonstrated positive effects of therapeutically applied low nuclear magnetic resonance (NMRT) for the treatment of painful disorders of the musculoskeletal system. In this study the cellular mechanism of action of NMRT was examined on chondrocytes. METHODS: Cal-78 human chondrosarcoma cells were kept under inflammatory conditions by application of IL-1ß. NMRT treated cells were tested for changes in histamine induced Ca2+ release by fura-2 calcium imaging. The effects of IL-1ß and of NMRT treatment were further tested by determining intracellular ATP concentrations and the activity of MAP-kinases and NF-κB. RESULTS: NMRT influenced the intracellular calcium signalling by elevating the basal [Ca2+]i. The peak calcium concentration evoked by 10 µM histamine was increased by IL-1ß and this increase was reversed under NMRT treatment. Screening of different kinase-activities revealed an apparent increase in activity of MAPK/ERK and MAPK/JNK in NMRT stimulated cells, p38 was downregulated. The IL-1ß-induced decline in intracellular ATP and the elevated NF-κB activity was reversed under NMRT stimulation. CONCLUSIONS: Under inflammatory conditions, NMRT influenced cellular functions by modulating cellular calcium influx and/or calcium release. Further, NMRT induced changes in MAPK activities such as down-regulation of NF-κB and increasing intracellular ATP might help to stabilise chondrocytes and delay cartilage damage due to OA.


Assuntos
Cálcio/metabolismo , Interleucina-1beta/farmacologia , NF-kappa B/fisiologia , Osteoartrite/terapia , Trifosfato de Adenosina/análise , Células Cultivadas , Condrócitos , DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Histamina/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoartrite/metabolismo
11.
Biochem Biophys Rep ; 11: 154-160, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955780

RESUMO

BACKGROUND: Osteoarthritis (OA) as the main chronic joint disease arises from a disturbed balance between anabolic and catabolic processes leading to destructions of articular cartilage of the joints. While mechanical stress can be disastrous for the metabolism of chondrocytes, mechanical stimulation at the physiological level is known to improve cell function. The disease modifying OA drug (DMOAD) diacerein functions as a slowly-acting drug in OA by exhibiting anti-inflammatory, anti-catabolic, and pro-anabolic properties on cartilage. Combining these two treatment options revealed positive effects on OA-chondrocytes. METHODS: Cells were grown on flexible silicone membranes and mechanically stimulated by cyclic tensile loading. After seven days in the presence or absence of diacerein, inflammation markers and growth factors were analyzed using quantitative real-time PCR and enzyme linked immune assays. The influence of conditioned medium was tested on cell proliferation and cell migration. RESULTS: Tensile strain and diacerein treatment reduced interleukin-6 (IL-6) expression, whereas cyclooxygenase-2 (COX2) expression was increased only by mechanical stimulation. The basic fibroblast growth factor (bFGF) was down regulated by the combined treatment modalities, whereas prostaglandin E2 (PGE2) synthesis was reduced only under OA conditions. The expression of platelet-derived growth factor (PDGF) and vascular endothelial growth factor A (VEGF-A) was down-regulated by both. CONCLUSIONS: From our study we conclude that moderate mechanical stimulation appears beneficial for the fate of the cell and improves the pharmacological effect of diacerein based on cross-talks between different initiated pathways. GENERAL SIGNIFICANCE: Combining two different treatment options broadens the perspective to treat OA and improves chondrocytes metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...