Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Stem Cells ; 42(4): 385-401, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206366

RESUMO

Pancreatic ductal progenitor cells have been proposed to contribute to adult tissue maintenance and regeneration after injury, but the identity of such ductal cells remains elusive. Here, from adult mice, we identify a near homogenous population of ductal progenitor-like clusters, with an average of 8 cells per cluster. They are a rare subpopulation, about 0.1% of the total pancreatic cells, and can be sorted using a fluorescence-activated cell sorter with the CD133highCD71lowFSCmid-high phenotype. They exhibit properties in self-renewal and tri-lineage differentiation (including endocrine-like cells) in a unique 3-dimensional colony assay system. An in vitro lineage tracing experiment, using a novel HprtDsRed/+ mouse model, demonstrates that a single cell from a cluster clonally gives rise to a colony. Droplet RNAseq analysis demonstrates that these ductal clusters express embryonic multipotent progenitor cell markers Sox9, Pdx1, and Nkx6-1, and genes involved in actin cytoskeleton regulation, inflammation responses, organ development, and cancer. Surprisingly, these ductal clusters resist prolonged trypsin digestion in vitro, preferentially survive in vivo after a severe acinar cell injury and become proliferative within 14 days post-injury. Thus, the ductal clusters are the fundamental units of progenitor-like cells in the adult murine pancreas with implications in diabetes treatment and tumorigenicity.


Assuntos
Células Acinares , Ductos Pancreáticos , Camundongos , Animais , Pâncreas , Células-Tronco , Diferenciação Celular
2.
Genome Biol ; 24(1): 284, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066546

RESUMO

BACKGROUND: Point mutations in histone variant H3.3 (H3.3K27M, H3.3G34R) and the H3.3-specific ATRX/DAXX chaperone complex are frequent events in pediatric gliomas. These H3.3 point mutations affect many chromatin modifications but the exact oncogenic mechanisms are currently unclear. Histone H3.3 is known to localize to nuclear compartments known as promyelocytic leukemia (PML) nuclear bodies, which are frequently mutated and confirmed as oncogenic drivers in acute promyelocytic leukemia. RESULTS: We find that the pediatric glioma-associated H3.3 point mutations disrupt the formation of PML nuclear bodies and this prevents differentiation down glial lineages. Similar to leukemias driven by PML mutations, H3.3-mutated glioma cells are sensitive to drugs that target PML bodies. We also find that point mutations in IDH1/2-which are common events in adult gliomas and myeloid leukemias-also disrupt the formation of PML bodies. CONCLUSIONS: We identify PML as a contributor to oncogenesis in a subset of gliomas and show that targeting PML bodies is effective in treating these H3.3-mutated pediatric gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Adulto , Criança , Humanos , Neoplasias Encefálicas/genética , Glioma/genética , Histonas/genética , Mutação , Corpos Nucleares da Leucemia Promielocítica/genética , Corpos Nucleares da Leucemia Promielocítica/patologia
3.
PLoS Genet ; 19(11): e1011031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37956204

RESUMO

PIWI proteins and their associated piRNAs act to silence transposons and promote gametogenesis. Murine PIWI proteins MIWI, MILI, and MIWI2 have multiple arginine and glycine (RG)-rich motifs at their N-terminal domains. Despite being known as docking sites for the TDRD family proteins, the in vivo regulatory roles for these RG motifs in directing PIWI in piRNA biogenesis and spermatogenesis remain elusive. To investigate the functional significance of RG motifs in mammalian PIWI proteins in vivo, we genetically engineered an arginine to lysine (RK) point mutation of a conserved N-terminal RG motif in MIWI in mice. We show that this tiny MIWI RG motif is indispensable for piRNA biogenesis and male fertility. The RK mutation in the RG motif disrupts MIWI-TDRKH interaction and impairs enrichment of MIWI to the intermitochondrial cement (IMC) for efficient piRNA production. Despite significant overall piRNA level reduction, piRNA trimming and maturation are not affected by the RK mutation. Consequently, MiwiRK mutant mice show chromatoid body malformation, spermatogenic arrest, and male sterility. Surprisingly, LINE1 transposons are effectively silenced in MiwiRK mutant mice, indicating a LINE1-independent cause of germ cell arrest distinctive from Miwi knockout mice. These findings reveal a crucial function of the RG motif in directing PIWI proteins to engage in efficient piRNA production critical for germ cell progression and highlight the functional importance of the PIWI N-terminal motifs in regulating male fertility.


Assuntos
RNA de Interação com Piwi , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , RNA Interferente Pequeno/metabolismo , Espermatogênese/genética , Proteínas/metabolismo , Camundongos Knockout , Arginina/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Mamíferos/genética
4.
Nat Commun ; 14(1): 5113, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607933

RESUMO

The cytoplasmic droplet is a conserved dilated area of cytoplasm situated at the neck of the sperm flagellum. Viewed as residual cytoplasm inherited from late spermatids, the cytoplasmic droplet contains numerous saccular elements as its key content. However, the origin of these saccules and the function of the cytoplasmic droplet have long been speculative. Here, we identify the molecular origin of these cytoplasmic droplet components by uncovering a vesicle pathway essential for formation and sequestration of saccules within the cytoplasmic droplet. This process is governed by a transmembrane protein SYPL1 and its interaction with VAMP3. Genetic ablation of SYPL1 in mice reveals that SYPL1 dictates the formation and accumulation of saccular elements in the forming cytoplasmic droplet. Derived from the Golgi, SYPL1 vesicles are critical for segregation of key metabolic enzymes within the forming cytoplasmic droplet of late spermatids and epididymal sperm, which are required for sperm development and male fertility. Our results uncover a mechanism to actively form and segregate saccules within the cytoplasmic droplet to promote sperm fertility.


Assuntos
Sêmen , Espermatozoides , Animais , Masculino , Camundongos , Vesícula , Citoplasma , Citosol , Fertilidade
5.
Andrology ; 11(5): 911-917, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36263612

RESUMO

In germ cells, small non-coding PIWI-interacting RNAs (piRNAs) work to silence harmful transposons to maintain genomic stability and regulate gene expression to ensure fertility. However, these piRNAs must undergo a series of steps during biogenesis to be properly loaded onto PIWI proteins and reach the correct nucleotide length. This review is focused on what we are learning about a crucial step in this process, piRNA trimming, in which pre-piRNAs are shortened to final lengths of 21-35 nucleotides. Recently, the 3'-5' exonuclease trimmer has been identified in various models as PNLDC1/PARN-1. Mutations of the piRNA trimmers in vivo lead to increased transposon expression, elevated levels of untrimmed pre-piRNAs, decreased piRNA stability, and male infertility. Here, we will discuss the role of piRNA trimmers in piRNA biogenesis and function, describe consequences of piRNA trimmer mutations using mammalian models and human patients, and examine future avenues of piRNA trimming-related study for clinical advancements for male infertility.


Assuntos
Infertilidade Masculina , RNA de Interação com Piwi , Animais , Masculino , Humanos , RNA Interferente Pequeno/genética , Proteínas/genética , Mutação , Infertilidade Masculina/genética , Mamíferos/genética , Mamíferos/metabolismo
6.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38234819

RESUMO

PIWI-interacting RNAs (piRNAs) play critical and conserved roles in transposon silencing and gene regulation in the animal germline. Two distinct piRNA populations are present during mouse spermatogenesis: pre-pachytene piRNAs in fetal/neonatal testes and pachytene piRNAs in adult testes. PNLDC1 is required for both pre-pachytene piRNA and pachytene piRNA 3' end maturation in multiple species. However, whether PNLDC1 is the bona fide piRNA trimmer and the physiological role of 3' trimming of two distinct piRNA populations in spermatogenesis remain unclear. Here, by inactivating Pnldc1 exonuclease activity in vitro and in mice, we reveal that PNLDC1 trimmer activity is required for both pre-pachytene piRNA and pachytene piRNA 3' end trimming and male fertility. Furthermore, conditional inactivation of Pnldc1 in postnatal germ cells causes LINE1 transposon de-repression and spermatogenic arrest in mice. This indicates that pachytene piRNA trimming, but not pre-pachytene piRNA trimming, is essential for mouse germ cell development and transposon silencing. Our findings highlight the potential of inhibiting germline piRNA trimmer activity as a potential means for male contraception.

7.
Mil Med ; 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943175

RESUMO

INTRODUCTION: Prolonged exposure therapy is an effective treatment for posttraumatic stress disorder that is underutilized in health systems, including the military health system. Organizational barriers to prolonged exposure implementation have been hypothesized but not systematically examined. This multisite project sought to identify barriers to increasing the use of prolonged exposure across eight military treatment facilities and describe potential solutions to addressing these barriers. MATERIALS AND METHODS: As part of a larger project to increase the use of prolonged exposure therapy in the military health system, we conducted a needs assessment at eight military treatment facilities. The needs assessment included analysis of clinic administrative data and a series of stakeholder interviews with behavioral health clinic providers, leadership, and support staff. Key barriers were matched with potential solutions using a rubric developed for this project. Identified facilitators, barriers, and potential solutions were summarized in a collaboratively developed implementation plan for increasing prolonged exposure therapy tailored to each site. RESULTS: There was a greater than anticipated consistency in the barriers reported by the sites, despite variation in the size and type of facility. The identified barriers were grouped into four categories: time-related barriers, provider-related barriers, barriers related to patient education and matching patients to providers, and scheduling-related barriers. Potential solutions to each barrier are described. CONCLUSIONS: The findings highlight the numerous organizational-level barriers to implementing evidence-based psychotherapy in the military health system and offer potential solutions that may be helpful in addressing the barriers.

8.
J Cardiovasc Dev Dis ; 9(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36005436

RESUMO

Calcific aortic valve disease (CAVD) is a common cardiac defect, particularly in the aging population. While several risk factors, such as bi-leaflet valve structure and old age, have been identified in CAVD pathogenesis, molecular mechanisms resulting in this condition are still under active investigation. Bone morphogenetic protein signaling via the activin type I receptor (AcvRI) plays an important role during physiological and pathological processes involving calcification, e.g., bone formation and heterotopic ossification. In addition, AcvRI is required for normal cardiac valve development, yet its role in aortic valve disease, if any, is currently unknown. Here, we induced the expression of constitutively active AcvRI in developing mouse embryos in the endocardium and in cells at the valve leaflet-wall junction that are not of endocardium origin using the Nfac1Cre transgene. The mutant mice were born alive, but showed thickened aortic and pulmonary valve leaflets during the early postnatal period. Adult mutant mice developed aortic stenosis with high frequency, sclerotic aortic valves, and displayed Alcian Blue-positive hypertrophic chondrocyte-like cells at the leaflet-wall junction. Calcification was only seen with low penetrance. In addition, we observed that the expression levels of gene sets associated with inflammation-related cytokine signaling, smooth muscle cell contraction, and cGMP signaling were altered in the mutants when compared with those of the controls. This work shows that, in a mouse model, such continuous AcvRI activity in the Nfatc1Cre recombination domain results in pathological changes in the aortic valve structure and function.

9.
Sci Adv ; 8(24): eabl8070, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704569

RESUMO

Eggs contain about 200,000 mitochondria that generate adenosine triphosphate and metabolites essential for oocyte development. Mitochondria also integrate metabolism and transcription via metabolites that regulate epigenetic modifiers, but there is no direct evidence linking oocyte mitochondrial function to the maternal epigenome and subsequent embryo development. Here, we have disrupted oocyte mitochondrial function via deletion of the mitochondrial fission factor Drp1. Fission-deficient oocytes exhibit a high frequency of failure in peri- and postimplantation development. This is associated with altered mitochondrial function, changes in the oocyte transcriptome and proteome, altered subcortical maternal complex, and a decrease in oocyte DNA methylation and H3K27me3. Transplanting pronuclei of fertilized Drp1 knockout oocytes to normal ooplasm fails to rescue embryonic lethality. We conclude that mitochondrial function plays a role in establishing the maternal epigenome, with serious consequences for embryo development.


Assuntos
Desenvolvimento Embrionário , Oócitos , Citoplasma/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Humanos , Mitocôndrias/metabolismo , Oócitos/metabolismo , Gravidez
10.
Nucleic Acids Res ; 50(8): 4500-4514, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451487

RESUMO

Histone H3.3 is an H3 variant which differs from the canonical H3.1/2 at four residues, including a serine residue at position 31 which is evolutionarily conserved. The H3.3 S31 residue is phosphorylated (H3.3 S31Ph) at heterochromatin regions including telomeres and pericentric repeats. However, the role of H3.3 S31Ph in these regions remains unknown. In this study, we find that H3.3 S31Ph regulates heterochromatin accessibility at telomeres during replication through regulation of H3K9/K36 histone demethylase KDM4B. In mouse embryonic stem (ES) cells, substitution of S31 with an alanine residue (H3.3 A31 -phosphorylation null mutant) results in increased KDM4B activity that removes H3K9me3 from telomeres. In contrast, substitution with a glutamic acid (H3.3 E31, mimics S31 phosphorylation) inhibits KDM4B, leading to increased H3K9me3 and DNA damage at telomeres. H3.3 E31 expression also increases damage at other heterochromatin regions including the pericentric heterochromatin and Y chromosome-specific satellite DNA repeats. We propose that H3.3 S31Ph regulation of KDM4B is required to control heterochromatin accessibility of repetitive DNA and preserve chromatin integrity.


Assuntos
Heterocromatina , Histonas , Animais , Camundongos , Histonas/genética , Histonas/metabolismo , Heterocromatina/genética , Histona Desmetilases/metabolismo , Fosforilação , Montagem e Desmontagem da Cromatina
11.
Mol Hum Reprod ; 27(11)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34590701

RESUMO

PIWI-interacting small RNAs (piRNAs) maintain genome stability in animal germ cells, with a predominant role in silencing transposable elements. Mutations in the piRNA pathway in the mouse uniformly lead to failed spermatogenesis and male sterility. By contrast, mutant females are fertile. In keeping with this paradigm, we previously reported male sterility and female fertility associated with loss of the enzyme HENMT1, which is responsible for stabilising piRNAs through the catalysation of 3'-terminal 2'-O-methylation. However, the Henmt1 mutant females were poor breeders, suggesting they could be subfertile. Therefore, we investigated oogenesis and female fertility in these mice in greater detail. Here, we show that mutant females indeed have a 3- to 4-fold reduction in follicle number and reduced litter sizes. In addition, meiosis-II mutant oocytes display various spindle abnormalities and have a dramatically altered transcriptome which includes a down-regulation of transcripts required for microtubule function. This down-regulation could explain the spindle defects observed with consequent reductions in litter size. We suggest these various effects on oogenesis could be exacerbated by asynapsis, an apparently universal feature of piRNA mutants of both sexes. Our findings reveal that loss of the piRNA pathway in females has significant functional consequences.


Assuntos
Fertilidade , Infertilidade Feminina/enzimologia , Meiose , Metiltransferases/metabolismo , Oócitos/enzimologia , Oogênese , RNA Interferente Pequeno/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Feminina/genética , Infertilidade Feminina/fisiopatologia , Metiltransferases/genética , Camundongos , RNA Interferente Pequeno/genética , Transcriptoma
12.
Cell Rep ; 34(6): 108729, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567274

RESUMO

Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting disorders manifesting as aberrant fetal growth and severe postnatal-growth-related complications. Based on the insulator model, one-third of BWS cases and two-thirds of SRS cases are consistent with misexpression of insulin-like growth factor 2 (IGF2), an important facilitator of fetal growth. We propose that the IGF2-dependent BWS and SRS cases can be identified by prenatal diagnosis and can be prevented by prenatal intervention targeting IGF2. We test this hypothesis using our mouse models of IGF2-dependent BWS and SRS. We find that genetically normalizing IGF2 levels in a double rescue experiment corrects the fetal overgrowth phenotype in the BWS model and the growth retardation in the SRS model. In addition, we pharmacologically rescue the BWS growth phenotype by reducing IGF2 signaling during late gestation. This animal study encourages clinical investigations to target IGF2 for prenatal diagnosis and prenatal prevention in human BWS and SRS.


Assuntos
Síndrome de Beckwith-Wiedemann , Marcação de Genes , Fator de Crescimento Insulin-Like II , Diagnóstico Pré-Natal , Síndrome de Silver-Russell , Animais , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/embriologia , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/terapia , Modelos Animais de Doenças , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Gravidez , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/embriologia , Síndrome de Silver-Russell/genética , Síndrome de Silver-Russell/terapia
13.
Dev Biol ; 450(2): 101-114, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940539

RESUMO

Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation. Differentiating embryoid bodies deficient in Trim33 showed an enrichment of gene sets associated with cardiac differentiation and contractility, while the total number of cardiac precursor cells was reduced. Concordantly, cardiac progenitor cell proliferation was reduced in Trim33-deficient embryos. ChIP-Seq performed using antibodies against Trim33 in differentiating embryoid bodies revealed more than 4000 peaks, which were significantly enriched close to genes implicated in stem cell maintenance and mesoderm development. Nearly half of the Trim33 peaks overlapped with binding sites of the Ctcf insulator protein. Our results suggest that Trim33 is required for appropriate differentiation of precardiogenic mesoderm during late gastrulation and that it will likely mediate some of its functions via multi-protein complexes, many of which include the chromatin architectural and insulator protein Ctcf.


Assuntos
Embrião de Mamíferos/embriologia , Gastrulação , Mesoderma/embriologia , Miocárdio/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Embrião de Mamíferos/citologia , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia , Fatores de Transcrição/genética
14.
Pathol Oncol Res ; 25(1): 263-268, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29101735

RESUMO

Prostate cancer (PCa) is the most common non-cutaneous cancer in the United States. There is currently a lack of safe and effective radiosensitizers that can enhance the effectiveness of radiation treatment (RT) for Pca. Clonogenic assay, PCNA staining, Quick Cell Proliferation assay, TUNEL staining and caspase-3 activity assay were used to assess proliferation and apoptosis in DU145 Pca cells. RT-PCR/IHC were used to investigate the mechanisms. We found that the percentage of colonies, PCNA staining intensity, and the optical density value of DU145 cells were decreased (RT/GT vs. RT). TUNEL + cells and the relative caspase-3 activity were increased (RT/GT vs. RT). Compared to RT, the anti-proliferative effect of RT/GT correlated with increased expression of the anti-proliferative molecule p16. Compared to RT, the pro-apoptotic effect of RT/GT correlated with decreased expression of the anti-apoptotic molecule Bcl-2. GT enhances RT sensitivity of DU145 by inhibiting proliferation and promoting apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Próstata/patologia , Radiossensibilizantes/farmacologia , Chá/química , Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Raios gama , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Células Tumorais Cultivadas
15.
Clin Epigenetics ; 10(1): 114, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30165906

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with a population frequency of approximately 1 in 10,000. The most common epigenetic defect in BWS is a loss of methylation (LOM) at the 11p15.5 imprinting centre, KCNQ1OT1 TSS-DMR, and affects 50% of cases. We hypothesised that genetic factors linked to folate metabolism may play a role in BWS predisposition via effects on methylation maintenance at KCNQ1OT1 TSS-DMR. RESULTS: Single nucleotide variants (SNVs) in the folate pathway affecting methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR), 5-methyltetrahydrofolate-homocysteine S-methyltransferase (MTR), cystathionine beta-synthase (CBS) and methionine adenosyltransferase (MAT1A) were examined in 55 BWS patients with KCNQ1OT1 TSS-DMR LOM and in 100 unaffected cases. MTHFR rs1801133: C>T was more prevalent in BWS with KCNQ1OT1 TSS-DMR LOM (p < 0.017); however, the relationship was not significant when the Bonferroni correction for multiple testing was applied (significance, p = 0.0036). None of the remaining 13 SNVs were significantly different in the two populations tested. The DNMT1 locus was screened in 53 BWS cases, and three rare missense variants were identified in each of three patients: rs138841970: C>T, rs150331990: A>G and rs757460628: G>A encoding NP_001124295 p.Arg136Cys, p.His1118Arg and p.Arg1223His, respectively. These variants have population frequencies of less than 1 in 1000 and were absent from 100 control cases. Functional characterization using a hemimethylated DNA trapping assay revealed a reduced methyltransferase activity relative to wild-type DNMT1 for each variant ranging from 40 to 70% reduction in activity. CONCLUSIONS: This study is the first to examine folate pathway genetics in BWS and to identify rare DNMT1 missense variants in affected individuals. Our data suggests that reduced DNMT1 activity could affect maintenance of methylation at KCNQ1OT1 TSS-DMR in some cases of BWS, possibly via a maternal effect in the early embryo. Larger cohort studies are warranted to further interrogate the relationship between impaired MTHFR enzymatic activity attributable to MTHFR rs1801133: C>T, dietary folate intake and BWS.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Ácido Fólico/metabolismo , Mutação de Sentido Incorreto , Síndrome de Beckwith-Wiedemann/metabolismo , Feminino , Impressão Genômica , Células HeLa , Humanos , Masculino , Redes e Vias Metabólicas , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo de Nucleotídeo Único , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
16.
Nat Commun ; 9(1): 3142, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087349

RESUMO

An array of oncogenic histone point mutations have been identified across a number of different cancer studies. It has been suggested that some of these mutant histones can exert their effects by inhibiting epigenetic writers. Here, we report that the H3.3 G34R (glycine to arginine) substitution mutation, found in paediatric gliomas, causes widespread changes in H3K9me3 and H3K36me3 by interfering with the KDM4 family of K9/K36 demethylases. Expression of a targeted single-copy of H3.3 G34R at endogenous levels induced chromatin alterations that were comparable to a KDM4 A/B/C triple-knockout. We find that H3.3 G34R preferentially binds KDM4 while simultaneously inhibiting its enzymatic activity, demonstrating that histone mutations can act through inhibition of epigenetic erasers. These results suggest that histone point mutations can exert their effects through interactions with a range of epigenetic readers, writers and erasers.


Assuntos
Neoplasias Encefálicas/metabolismo , Cromatina/química , Glioblastoma/metabolismo , Histonas/metabolismo , Mutação , Mutação Puntual , Animais , Arginina/química , Biotinilação , Neoplasias Encefálicas/genética , Criança , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glicina/química , Histonas/genética , Humanos , Camundongos , Ligação Proteica , Análise de Sequência de RNA , Transgenes
17.
Sci Rep ; 8(1): 7528, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760428

RESUMO

Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas/genética , Substância Negra/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Comportamento Animal , Feminino , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Chaperonas Moleculares , Regiões Promotoras Genéticas , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Proc Natl Acad Sci U S A ; 115(18): 4737-4742, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669917

RESUMO

ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.


Assuntos
DNA de Neoplasias/metabolismo , DNA Ribossômico/metabolismo , Dosagem de Genes , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Nuclear Ligada ao X/metabolismo , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , DNA de Neoplasias/genética , DNA Ribossômico/genética , Instabilidade Genômica , Humanos , Naftiridinas/farmacologia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , RNA Polimerase I/antagonistas & inibidores , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteína Nuclear Ligada ao X/genética
19.
Biomacromolecules ; 19(7): 2665-2672, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29617117

RESUMO

Synthesizing lignin-based copolymers would valorize a major coproduct stream from pulp and paper mills and biorefineries as well as reduce the dependence on petrochemical-based consumer goods. In this study, we used organosolv lignin isolated from hybrid poplar ( Populus trichocarpa × P. deltoides) to generate lignin-containing methacrylate hydrogels. The copolymer hydrogels were synthesized by first grafting 2-hydroxyethyl methacrylate (HEMA) onto lignin (OSLH) via esterification and then by free radical polymerization of OSLH with excess HEMA. The copolymer hydrogels were prepared with different stoichiometric ratios of OSLH (e.g., 0, 10, 20, and 40 wt %) with respect to HEMA. Copolymerization with OSLH led to an increase in cross-linking density, which in turn enhanced the hydrogel's material properties; we report up to 39% improvement in water retention, 20% increase in thermostability, and up to a 3 order increase in magnitude of the storage modulus ( G'). The copolymer's properties, such as water retention and glass transition temperature, could be tuned by altering the percent functionalization of lignin OH groups and the ratio of OSLH to HEMA.


Assuntos
Hidrogéis/síntese química , Lignina/análogos & derivados , Metacrilatos/química , Polimerização , Populus/química , Molhabilidade
20.
Foot Ankle Int ; 39(2): 135-142, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29389250

RESUMO

BACKGROUND: Over the past decade, total ankle arthroplasty (TAA) has become a mainstay in the treatment of end-stage ankle arthritis. Currently in its fourth generation, the Scandanavian Total Ankle Replacement (STAR) is the only 3-piece mobile bearing ankle prosthesis available in the United States. Our current study reports implant survivorship at 15 years and patient outcomes for a subset of these survivors available for study. METHODS: Eighty-four TAAs were performed between 1998 and 2000. Metal component survivorship at 15 years was calculated with a Kaplan-Meier curve. Twenty-four (29%) of 84 patients were available for participation with a minimum 15-year follow-up. Any radiographic changes were documented. All additional procedures and complications were recorded. Clinical findings, self-reported performance and pain evaluations, and AOFAS ankle/hindfoot scores were noted. RESULTS: Metal implant survival was 73% at 15 years. Of the 24 patients available for clinical evaluation, 18 of 24 patients (70.7%) had no change in prosthetic alignment from the immediate postoperative radiograph. Only 1 subtalar fusion was required for symptomatic adjacent joint arthritis. Three patients sustained a broken polyethylene component. AOFAS scores improved from an average of 39.6 points preoperatively, to an average of 71.6. More than half (52.4%) of patients with retained implants required an additional surgical procedure; 3 required 2 additional procedures. The average time to subsequent procedure was 10.2 years. CONCLUSION: Our small cohort demonstrated STAR ankles with retention at 9 years were highly likely to survive to 15 years, and patients continued to have significant improvement in pain relief and minimal decrease in function. At 15 years from TAA, metal survivorship was 73%. As with all ankle replacements, supplementary procedures were common. LEVEL OF EVIDENCE: Level IV, case series.


Assuntos
Articulação do Tornozelo/cirurgia , Artrodese/efeitos adversos , Artroplastia de Substituição do Tornozelo/efeitos adversos , Prótese Articular/efeitos adversos , Seguimentos , Humanos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...