Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 150: 126-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318775

RESUMO

Four of the radioactive xenon isotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This paper focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação/métodos , Radioisótopos de Xenônio/análise , Cooperação Internacional , Armas Nucleares
2.
J Environ Radioact ; 110: 46-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22361016

RESUMO

Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite.


Assuntos
Radioisótopos de Césio/análise , Monitoramento Ambiental/métodos , Lagos/química , Nevada , Poluentes Químicos da Água/análise
3.
J Environ Radioact ; 102(11): 1008-11, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21816522

RESUMO

There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.


Assuntos
Isótopos de Césio/análise , Monitoramento Ambiental , Centrais Nucleares , Poluentes Radioativos do Solo/análise , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Humanos , Radioisótopos do Iodo/análise , Cinza Radioativa/análise , Fatores de Tempo , Estados Unidos , Radioisótopos de Xenônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...