Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21623, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027743

RESUMO

Nanomaterials (NMs) are now gaining popularity to be used in agriculture as fertilisers to reduce the dose of conventional fertilisers and enhance nutrient use efficiency. Urea has found its application as a conventional nitrogenous fertiliser since long, however, the nutrient use efficiency of the bulk form of urea is low due to issues related to ammonia volatilisation. This study proposes a biogenic synthesis route to develop urea nanoparticles that can be used as nano-fertiliser for better uptake and hence improved nutrient efficiency. Large scale production and widespread application of these nano-fertilisers to the agricultural fields will enhance the direct exposure to workers and farmers. Therefore, the occupational safety evaluation becomes critical. In this study, we report a new method for synthesis of urea nanoparticles (TNU, absolute size: 12.14 ± 7.79 nm) followed by nano-safety evaluation. Herein, the pulmonary and ocular compatibilities of TNU were investigated in vitro and in vivo respectively. The assay for cellular mitochondrial activity was carried out on human lung fibroblasts (WI-38) under varied TNU exposure concentrations up to 72 h. The acute biocompatibility effect, ocular irritation and sub-lethal effects were measured on New Zealand Rabbit. The results show that TNU do not exhibit any cytotoxicity and detrimental cell mitochondrial activity up to the highest tested concentration of 1000 µg/mL and 72 h of testing. The animal experiment results also show that neither acute nor sub-lethal toxic effects can be detected after TNU ocular instillation up to 21 days when tested up to environmentally relevant concentration of 15 µg/mL. These results suggest the occupational safety of biogenic urea nanoparticles and support its application as nanofertiliser.

2.
Phys Chem Chem Phys ; 23(11): 6481-6489, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33710190

RESUMO

Exchange bias in ferromagnetic/antiferromagnetic systems can be explained in terms of various interfacial phenomena. Among these, spin glass frustration can affect the magnetic properties in exchange bias systems. Here we have studied a NiMn/CoFeB exchange bias system in which spin glass frustration seems to play a crucial role. In order to account for the effect of spin glass frustration on magnetic properties, we have investigated the temperature and cooling field dependence of exchange bias. We have observed the decrease of exchange bias field (µ0HEB) with cooling field (µ0HFC) whereas there is a negligible effect on coercive field (µ0HC). Exponential decay of µ0HEB and µ0HC is found in this exchange bias system. Furthermore, training effect measurements have been performed to study the spin relaxation mechanism. We have fitted the training effect data with a frozen and rotatable spin relaxation model. We have determined the ratio of relaxation rates of interfacial rotatable and frozen spins in this study. The training effect data are also fitted with various other models. Furthermore, we have observed the shifting of the peak temperature towards higher temperature with frequency from the ac susceptibility data. The peak temperature vs. frequency data can be described by the Vogel-Fulcher law, which indicates the spin glass like state in the bilayer system.

3.
Dalton Trans ; 48(19): 6588-6595, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31017138

RESUMO

We report a synthesis strategy to simplify often cumbersome post-synthesis ligand exchange protocols and use that approach to synthesize EDTA-Na3 (N-(trimethoxysilylpropyl)ethylenediaminetriacetate, trisodium salt) functionalized hydrophilic and biocompatible Fe3O4 nanoparticles. The grafting density of EDTA-Na3 has been controlled from 0.07-0.37 µmol m-2 by varying the time at which EDTA-Na3 was added to the reaction. The success of EDTA-Na3 surface functionalization has been verified using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and Mössbauer spectroscopy techniques. Mössbauer spectroscopy results showed the evidence of Fe-EDTA monomer and dimer formation signifying covalent bonding between Fe ions and EDTA-Na3. The earliest addition of EDTA-Na3 resulted in the most stable dispersion of nanoparticles in water and phosphate buffered saline (PBS) which remained stable for more than a month. In addition, our results suggest that these nanoparticles can have useful applications in magnetic hyperthermia and eradication of methicillin-resistant Staphylococcus aureus (MRSA) bacteria in presence of an ac magnetic field.


Assuntos
Antibacterianos/química , Ácido Edético/química , Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Antibacterianos/farmacologia , Ácido Edético/farmacologia , Óxido Ferroso-Férrico/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Propriedades de Superfície
4.
Langmuir ; 34(8): 2748-2757, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29376382

RESUMO

A facile one-pot method for synthesizing amine-functionalized nonspherical Fe3O4 nanoparticles in gram-scale quantities is presented using just a single source of iron (iron(II) chloride) and an amine (triethylamine). The amine not only transforms iron salt to Fe3O4, but also directs the morphology of the nanoparticles along with the temperature of the reaction and functionalizes them, making the synthesis very economical. By modifying the surface further, these nanoparticles promise to offer useful biomedical applications. For example, after biocide coating, the particles are found to be 100% effective in deactivating methicillin-resistant Staphylococcus aureus (MRSA) bacteria in 2 h. Cellular-uptake studies using biocompatible EDTA-Na3 (N-(trimethoxysilyl-propyl)ethylenediaminetriacetate, trisodium salt)-coated nanoparticles in human glioblastoma U-251 cells show that the majority of the particles are internalized by the cells in the presence of a small dc-magnetic field, making these particles a potential candidate as drug carriers for magnetic field-targeted delivery and hyperthermia.


Assuntos
Aminas/química , Materiais Biomiméticos/química , Óxido Ferroso-Férrico/química , Pesquisa Biomédica , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...