Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 22(11): 1992-2001, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33660881

RESUMO

Imperata cylindrica is known to produce a pair of triterpenes, isoarborinol and fernenol, that exhibit identical planar structures but possess opposite stereochemistry at six of the nine chiral centers. These differences arise from a boat or a chair cyclization of the B-ring of the substrate. Herein, we report the characterization of three OSC genes from I. cylindrica. IcOSC1 and IcOSC5 were identified as isoarborinol and fernenol synthases, respectively, while IcOSC3 was characterized as a multifunctional enzyme that produces glutinol and friedelin as its major products. Mutational studies of isoarborinol and fernenol synthases revealed that the residues surrounding the DCTAE motif partially affected the conformation of the B-ring during cyclization. Additionally, the IcOSC1-W255H mutant produced the rare triterpene boehmerol. The introduced histidine residue presumably abstracted a proton from the intermediary carbocation at C18 during the 1,2-rearrangement. Expression analysis indicated that all OSC genes were highly expressed in stems.


Assuntos
Alquil e Aril Transferases/metabolismo , Poaceae/enzimologia , Triterpenos/metabolismo , Biocatálise , Ciclização , Estrutura Molecular , Estereoisomerismo , Triterpenos/química
2.
J Biol Chem ; 294(49): 18662-18673, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31656227

RESUMO

Cucurbitacins are highly oxygenated triterpenoids characteristic of plants in the family Cucurbitaceae and responsible for the bitter taste of these plants. Fruits of bitter melon (Momordica charantia) contain various cucurbitacins possessing an unusual ether bridge between C5 and C19, not observed in other Cucurbitaceae members. Using a combination of next-generation sequencing and RNA-Seq analysis and gene-to-gene co-expression analysis with the ConfeitoGUIplus software, we identified three P450 genes, CYP81AQ19, CYP88L7, and CYP88L8, expected to be involved in cucurbitacin biosynthesis. CYP81AQ19 co-expression with cucurbitadienol synthase in yeast resulted in the production of cucurbita-5,24-diene-3ß,23α-diol. A mild acid treatment of this compound resulted in an isomerization of the C23-OH group to C25-OH with the concomitant migration of a double bond, suggesting that a nonenzymatic transformation may account for the observed C25-OH in the majority of cucurbitacins found in plants. The functional expression of CYP88L7 resulted in the production of hydroxylated C19 as well as C5-C19 ether-bridged products. A plausible mechanism for the formation of the C5-C19 ether bridge involves C7 and C19 hydroxylations, indicating a multifunctional nature of this P450. On the other hand, functional CYP88L8 expression gave a single product, a triterpene diol, indicating a monofunctional P450 catalyzing the C7 hydroxylation. Our findings of the roles of several plant P450s in cucurbitacin biosynthesis reveal that an allylic hydroxylation is a key enzymatic transformation that triggers subsequent processes to produce structurally diverse products.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Momordica/química , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Hidroxilação , Isoformas de Proteínas , Software
3.
Biosci Biotechnol Biochem ; 83(2): 251-261, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30317922

RESUMO

Cucurbitaceae plants contain characteristic triterpenoids. Momordica charantia, known as a bitter melon, contains cucurbitacins and multiflorane type triterpenes, which confer bitter tasting and exhibit pharmacological activities. Their carbon skeletons are biosynthesized from 2,3-oxidosqualene by responsible oxidosqualene cyclase (OSC). In order to identify OSCs in M. charantia, RNA-seq analysis was carried out from ten different tissues. The functional analysis of the resulting four OSC genes revealed that they were cucurbitadienol synthase (McCBS), isomultiflorenol synthase (McIMS), ß-amyrin synthase (McBAS) and cycloartenol synthase (McCAS), respectively. Their distinct expression patterns based on RPKM values and quantitative RT-PCR suggested how the characteristic triterpenoids were biosynthesized in each tissue. Although cucurbitacins were finally accumulated in fruits, McCBS showed highest expression in leaves indicating that the early step of cucurbitacins biosynthesis takes place in leaves, but not in fruits. Abbreviations: OSC: oxidosqualene cyclase; RPKM: reads perkilobase of exon per million mapped reads.


Assuntos
Genes de Plantas , Transferases Intramoleculares/genética , Momordica charantia/genética , Análise de Sequência de RNA/métodos , Triterpenos/metabolismo , Sequência de Aminoácidos , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Momordica charantia/enzimologia , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
4.
PLoS One ; 13(10): e0206075, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352084

RESUMO

Analysis of the large amounts of data accumulated in public databanks can facilitate a more comprehensive understanding of molecular biological processes. Community detection from molecular biological data is paramount in characterizing evolutionary and functional traits of organisms based on gene homology and co-expression, respectively. Although there are common tools to detect local communities from a large network, no toolkit exists for detecting communities that include an element of interest based on size sensitivity, i.e., functionality to obtain local communities with preferred sizes. Herein, we present the ConfeitoGUI toolkit for detecting local communities from a correlation network involving size sensitivity. We compared the toolkit with other common tools for detection in reconstructing communities of microarray experiments of mice. In the results, ConfeitoGUI was observed to be preferable for detecting communities whose sizes are similar to those of original communities compared to other common tools. By changing simple parameters representing sizes for the toolkit, a user can obtain local communities with preferred sizes, which is beneficial for further analysis of members belonging to the communities.


Assuntos
Algoritmos , Gráficos por Computador , Interface Usuário-Computador , Animais , Humanos , Artes Marciais , Camundongos
5.
Biochem Biophys Res Commun ; 443(2): 768-74, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24342623

RESUMO

All isoprenoids are derived from a common C5 unit, isopentenyl diphosphate (IPP). In plants, IPP is synthesized via two distinct pathways; the cytosolic mevalonate pathway and the plastidial non-mevalonate (MEP) pathway. In this study, we used a co-expression analysis to identify transcription factors that coordinately regulate the expression of multiple genes encoding enzymes in the IPP biosynthetic pathway. Some candidates showed especially strong correlations with multiple genes encoding MEP-pathway enzymes. We report here that phytochrome-interacting factor 5 (PIF5), a basic-helix-loop-helix type transcription factor, functions as a positive regulator of the MEP pathway. Its overexpression in T87 suspension cultured cells resulted in increased accumulation of chlorophylls and carotenoids. Detailed analyses of carotenoids by HPLC indicated that some carotenoid biosynthetic pathways were concomitantly up-regulated, possibly as a result of enhanced IPP metabolic flow. Our results also revealed other PIF family proteins that play different roles from that of PIF5 in IPP metabolism.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hemiterpenos/biossíntese , Complexos Multienzimáticos/genética , Plastídeos/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Hemiterpenos/genética , Complexos Multienzimáticos/metabolismo , Compostos Organofosforados , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...