Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCO Glob Oncol ; 8: e2200117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714309

RESUMO

Patients of African ancestry are not well-represented in cancer clinical trials despite bearing a disproportionate share of mortality both in United States and Africa. We describe key stakeholder perspectives and priorities related to bringing early-stage cancer clinical trials to Africa and outline essential action steps. Increasing Diversity, Market Access, and Capacity in Oncology Registration Trials-Is Africa the Answer? satellite session was organized at 2021 Accelerating Anti-Cancer Agent Development and Validation Workshop. Panelists included representatives of African Organization for Research and Training in Cancer, Uganda Cancer Institute, Uganda Women's Cancer Support Organization, BIO Ventures for Global Health, Bill & Melinda Gates Foundation, the US Food and Drug Administration, Nigeria's National Agency for Food and Drug Administration and Control, Bayer, and Genentech, with moderators from ASCO and American Cancer Society. Key discussion themes and resulting action steps were agreed upon by all participants. Panelists agreed that increasing diversity in cancer clinical trials by including African patients is key to ensuring novel drugs are safe and effective across populations. They underscored the importance of equity in clinical trial access for patients in Africa. Panelists discussed their values related to access and barriers to opening clinical trials in Africa and described innovative solutions from their work aimed at overcoming these obstacles. Multisectoral collaboration efforts that allow leveraging of limited resources and result in sustainable capacity building and mutually beneficial long-term partnerships were discussed as key to outlined action steps. The panel discussion resulted in valuable insights about key stakeholder values and priorities related to bringing early-stage clinical trials to Africa, as well as specific actions for each stakeholder group.


Assuntos
Oncologia , Neoplasias , Fortalecimento Institucional/métodos , Ensaios Clínicos como Assunto , Feminino , Humanos , Neoplasias/tratamento farmacológico , Uganda , Estados Unidos , United States Food and Drug Administration
2.
Trop Med Infect Dis ; 4(1)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917506

RESUMO

Tropical diseases, including malaria and a group of infections termed neglected tropical diseases (NTDs), pose enormous threats to human health and wellbeing globally. In concert with efforts to broaden access to current treatments, it is also critical to expand research and development (R&D) of new drugs that address therapeutic gaps and concerns associated with existing medications, including emergence of resistance. Limited commercial incentives, particularly compared to products for diseases prevalent in high-income countries, have hindered many pharmaceutical companies from contributing their immense product development know-how and resources to tropical disease R&D. In this article we present WIPO Re:Search, an international initiative co-led by BIO Ventures for Global Health (BVGH) and the World Intellectual Property Organization (WIPO), as an innovative and impactful public-private partnership model that promotes cross-sector intellectual property sharing and R&D to accelerate tropical disease drug discovery and development. Importantly, WIPO Re:Search also drives progress toward the United Nations Sustainable Development Goals (SDGs). Through case studies, we illustrate how WIPO Re:Search empowers high-quality tropical disease drug discovery researchers from academic/non-profit organizations and small companies (including scientists in low- and middle-income countries) to leapfrog their R&D programs by accessing pharmaceutical industry resources that may not otherwise be available to them.

3.
Trop Med Infect Dis ; 4(1)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634429

RESUMO

Schistosomiasis is an acute and chronic disease that affects over 200 million people worldwide, and with over 700 million people estimated to be at risk of contracting this disease, it is a pressing issue in global health. However, research and development (R&D) to develop new approaches to preventing, diagnosing, and treating schistosomiasis has been relatively limited. Praziquantel, a drug developed in the 1970s, is the only agent used in schistosomiasis mass drug administration (MDA) campaigns, indicating a critical need for a diversified therapeutic pipeline. Further, gaps in the vaccine and diagnostic pipelines demonstrate a need for early-stage innovation in all areas of schistosomiasis product R&D. As a platform for public-private partnerships (PPPs), the WIPO Re:Search consortium engages the private sector in early-stage R&D for neglected diseases by forging mutually beneficial collaborations and facilitating the sharing of intellectual property (IP) assets between the for-profit and academic/non-profit sectors. The Consortium connects people, resources, and ideas to fill gaps in neglected disease product development pipelines by leveraging the strengths of these two sectors. Using WIPO Re:Search as an example, this article highlights the opportunities for the PPP model to play a key role in the elimination of schistosomiasis.

4.
Transgenic Res ; 16(2): 193-201, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17206489

RESUMO

The ability to genetically manipulate mice has led to rapid progress in our understanding of the roles of different gene products in human disease. Transgenic mice have often been created in the FVB/NJ (FVB) strain due to its high fecundity, while gene-targeted mice have been developed in the 129/SvJ-C57Bl/6J strains due to the capacity of 129/SvJ embryonic stem cells to facilitate germline transmission. Gene-targeted mice are commonly backcrossed into the C57Bl/6J (B6) background for comparison with existing data. Genetic modifiers have been shown to modulate mammary tumor latency in mouse models of breast cancer and it is commonly known that the FVB strain is susceptible to mammary tumors while the B6 strain is more resistant. Since gene-targeted mice in the B6 background are frequently bred into the polyomavirus middle T (PyMT) mouse model of breast cancer in the FVB strain, we have sought to understand the impact of the different genetic backgrounds on the resulting phenotype. We bred mice deficient in the inducible nitric oxide synthase (iNOS) until they were congenic in the PyMT model in the FVB and B6 strains. Our results reveal that the large difference in mean tumor latencies in the two backgrounds of 53 and 92 days respectively affect the ability to discern smaller differences in latency due to the Nos2 genetic mutation. Furthermore, the longer latency in the B6 strain enables a more detailed analysis of tumor formation indicating that individual tumor development is not stoichastic, but is initiated in the #1 glands and proceeds in early and late phases. NO production affects tumors that develop early suggesting an association of iNOS-induced NO with a more aggressive tumor phenotype, consistent with human clinical data positively correlating iNOS expression with breast cancer progression. An examination of lung metastases, which are significantly reduced in PyMT/iNOS-/- mice compared with PyMT/iNOS+/+ mice only in the B6 background, is concordant with these findings. Our data suggest that PyMT in the B6 background provides a useful model for the study of inflammation-induced breast cancer.


Assuntos
Neoplasias Mamárias Experimentais/genética , Óxido Nítrico Sintase Tipo II/genética , Fenótipo , Animais , Neoplasias Mamárias Experimentais/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/deficiência
5.
Int J Cancer ; 106(1): 1-7, 2003 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-12794750

RESUMO

Nitric oxide (NO) and its metabolites are implicated in carcinogenesis and metastasis. Both stimulatory and inhibitory effects of NO have been reported in relation to breast cancer and its role in the development of malignancies and metastasis remains uncertain. We have used the polyomavirus middle T antigen (PyV-mT) targeted to the mouse mammary gland and bred into an inducible NO synthase (iNOS)-deficient C57Bl/6 strain to examine a role for nitric oxide in modulating tumors that develop in the complex environment of the whole animal. The development of hyperplasias was delayed to the extent that the earliest palpable tumors arose 2-4 weeks later in PyV-mT/iNOS(-/-) mice compared with PyV-mT/iNOS(+/+) mice, identifying a role for iNOS in early events in mammary tumor formation. Tumors that did develop in PyV-mT/iNOS(-/-) mice were characteristically well differentiated and had a cribriform pattern. Other tumors were myoepithelial adenocarcinomas with uniform nuclear size. In contrast, mice capable of iNOS activity typically developed solid nodular adenocarcinomas with a high mitotic index and pleomorphic nuclei. No significant effect of iNOS deficiency was found on vascular density in hyperplasias or tumors by examining CD31-positive vessels. The infiltration of lesions by macrophages, cells capable of significant NO production, remained unchanged in PyV-mT/iNOS(-/-) mice. Metastatic potential was retained by PyV-mT-transformed epithelium in the absence of iNOS, indicating that NO production by iNOS is not essential for this process. These results indicate a role for iNOS in tumorigenesis, particularly in the regulation of early events.


Assuntos
Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Óxido Nítrico Sintase/fisiologia , Adenocarcinoma/genética , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Western Blotting , Feminino , Heterozigoto , Hiperplasia , Imuno-Histoquímica , Metástase Linfática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose , Metástase Neoplásica , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transgenes
6.
J Neurochem ; 85(2): 476-82, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12675924

RESUMO

We have previously demonstrated that genetic ablation of cationic amino acid transporter 2 (Cat2) significantly inhibits nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) in activated macrophages. Here we report that iNOS activity is impaired by 84% in activated Cat2-deficient astrocytes. Cat2 ablation appears to reduce astrocyte NO synthesis by decreasing the uptake of the sole precursor, arginine, as well as by reducing the expression of iNOS following activation. Excessive or dysregulated NO production by activated astrocytes and other CNS cell types has been implicated in the pathogenesis of neurological disorders. Our results support the idea that manipulation of CAT2 transporter function might be useful for the therapeutic modulation of iNOS activity.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácidos Catiônicos/deficiência , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Arginina/farmacocinética , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Transportador 2 de Aminoácidos Catiônicos/genética , Células Cultivadas , Feminino , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , RNA Mensageiro/metabolismo
7.
Nitric Oxide ; 7(4): 236-43, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12446172

RESUMO

High-output nitric oxide (NO) production by nitric oxide synthase 2 (NOS2) contributes to normal cellular processes and pathophysiological conditions. The transport of L-arginine, the substrate for NOS2, is required for sustained NO production by NOS2. L-Arginine can be transported by several kinetically defined transport systems, although the majority of arginine uptake is mediated by transport system y(+), encoded by the Cat1-3 gene family. Using macrophages from Cat2-deficient mice, we previously determined that arginine uptake via CAT2 is absolutely required for sustained NO production. Because NO production by fibroblasts is important in wound healing, we sought to determine whether CAT2 is required for NO production in cytokine-stimulated Cat2-deficient and wild-type embryonic fibroblasts. Although macrophages and fibroblasts both required extracellular L-arginine for NO production, NO synthesis by activated Cat2(-/-) fibroblasts was reduced only 19%, whereas Cat2(-/-) macrophages were virtually unable to produce NO. As expected, activated Cat2(-/-) fibroblasts had reduced system y(+)-mediated arginine uptake. However, their reduced NO output was not the result of a significant difference in intracellular L-arginine levels following cytokine stimulation. Uptake experiments revealed that the L-arginine transport system y(+)L was the major cationic amino acid carrier in fibroblasts of both genotypes. We conclude that NO production in embryonic fibroblasts is only partially dependent on CAT2 and that other compensating transporters provide arginine for NOS2-mediated NO synthesis. The data demonstrate that fibroblasts and macrophages have differential dependence on CAT2-mediated L-arginine transport for NO synthesis. The important physiological implication of this finding is discussed.


Assuntos
Arginina/metabolismo , Transportador 2 de Aminoácidos Catiônicos/deficiência , Fibroblastos/metabolismo , Óxido Nítrico/biossíntese , Animais , Arginina/farmacocinética , Northern Blotting , Western Blotting , Transportador 2 de Aminoácidos Catiônicos/genética , Transportador 2 de Aminoácidos Catiônicos/metabolismo , Células Cultivadas , Citocinas/farmacologia , Embrião de Mamíferos , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , RNA Mensageiro/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA