Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(13): e2022GL099381, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35865735

RESUMO

Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.

2.
Science ; 267(5199): 849-52, 1995 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-17813911

RESUMO

Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...