Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2700: 93-116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603176

RESUMO

Dendritic cells (DCs) are key regulators of immunogenic and tolerogenic immune responses. Both these immune responses require DCs respectively to activate effector T cells or to induce their anergy and T regulatory activity. Modifications of DCs in the laboratory and several pharmacological agents can enhance and stabilize their tolerogenic properties. Recent evidences demonstrate that activation of specific toll-like receptors (TLRs) can be involved in induction of DCs with tolerogenic properties able to initiate T regulatory cell responses.In the present chapter, we show a detail protocol to obtain in vitro regulatory conventional DCs (cDCs) in response to repeated exposure to lipopolysaccharide (LPS), a ligand of TLR4, by mimicking the mechanism of endotoxin tolerance. Subsequently, the protective effect of cDCs' conditionate with LPS will be describe in in vivo inflammatory model of endotoxemia. Finally, we illustrate the method to study the ability of LPS-conditionate cDCs to promote T regulatory cells in ex vivo system.


Assuntos
Tolerância à Endotoxina , Linfócitos T Reguladores , Lipopolissacarídeos , Células Dendríticas
2.
Front Immunol ; 14: 964660, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081894

RESUMO

Background: Chronic systemic inflammation reduces the bioavailability of circulating endothelial progenitor cells (EPCs). Indoleamine 2,3-dioxygenase 1 (IDO1), a key enzyme of immune tolerance catalyzing the initial step of tryptophan degradation along the so-called l-kynurenine (l-kyn) pathway, that is induced by inflammatory stimuli and exerts anti-inflammatory effects. A specific relationship between IDO1 activity and circulating EPC numbers has not yet been investigated. Methods: In this study, circulating EPCs were examined in mice treated with low doses of lipopolysaccharide (LPS) to mimic low-grade inflammation. Moreover, the association between IDO1 activity and circulating EPCs was studied in a cohort of 277 patients with variable systemic low-grade inflammation. Results: Repeated low doses of LPS caused a decrease in circulating EPCs and l-kyn supplementation, mimicking IDO1 activation, significantly increased EPC numbers under homeostatic conditions preventing EPC decline in low-grade endotoxemia. Accordingly, in patients with variable systemic low-grade inflammation, there was a significant interaction between IDO1 activity and high-sensitivity C-reactive protein (hs-CRP) in predicting circulating EPCs, with high hs-CRP associated with significantly lower EPCs at low IDO1 activity but not at high IDO1 activity. Interpretation: Overall, these findings demonstrate that systemic low-grade inflammation reduces circulating EPCs. However, high IDO1 activity and l-kyn supplementation limit circulating EPC loss in low-grade inflammation.


Assuntos
Células Progenitoras Endoteliais , Triptofano , Animais , Camundongos , Triptofano/metabolismo , Células Progenitoras Endoteliais/metabolismo , Proteína C-Reativa , Lipopolissacarídeos , Inflamação , Cinurenina/metabolismo
3.
Cells ; 12(4)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36831194

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.


Assuntos
Senescência Celular , Vesículas Extracelulares , Senescência Celular/genética , Vesículas Extracelulares/metabolismo , Fenótipo , Transporte Biológico
4.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768851

RESUMO

In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.


Assuntos
Vesículas Extracelulares , Microbiota , Humanos , Feminino , Gravidez , Monócitos/metabolismo , Inflamassomos/metabolismo , Líquido Amniótico , Proteômica , Vesículas Extracelulares/metabolismo , Endotoxinas/metabolismo
5.
Immunity ; 55(6): 1032-1050.e14, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35704993

RESUMO

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Animais , Células Dendríticas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Transdução de Sinais , Triptofano/metabolismo
6.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491676

RESUMO

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Assuntos
Hemofilia A , Inteínas , Animais , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Hemofilia A/genética , Hemofilia A/terapia , Inteínas/genética , Fígado , Camundongos , Trans-Splicing
7.
FASEB J ; 36(4): e22218, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218567

RESUMO

An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.


Assuntos
Líquido Amniótico/citologia , Anti-Inflamatórios/farmacologia , Vesículas Extracelulares/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamação/prevenção & controle , Monócitos/citologia , Células-Tronco/citologia , Adenosina/metabolismo , Líquido Amniótico/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Monócitos/metabolismo , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/química , Receptores Purinérgicos P1/metabolismo , Células-Tronco/metabolismo , Células THP-1
8.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34847078

RESUMO

Autophagy selectively degrades aggregation-prone misfolded proteins caused by defective cellular proteostasis. However, the complexity of autophagy may prevent the full appreciation of how its modulation could be used as a therapeutic strategy in disease management. Here, we define a molecular pathway through which recombinant IL-1 receptor antagonist (IL-1Ra, anakinra) affects cellular proteostasis independently from the IL-1 receptor (IL-1R1). Anakinra promoted H2O2-driven autophagy through a xenobiotic sensing pathway involving the aryl hydrocarbon receptor that, activated through the indoleamine 2,3-dioxygenase 1-kynurenine pathway, transcriptionally activated NADPH oxidase 4 independent of the IL-1R1. By coupling the mitochondrial redox balance to autophagy, anakinra improved the dysregulated proteostasis network in murine and human cystic fibrosis. We anticipate that anakinra may represent a therapeutic option in addition to its IL-1R1-dependent antiinflammatory properties by acting at the intersection of mitochondrial oxidative stress and autophagy with the capacity to restore conditions in which defective proteostasis leads to human disease.


Assuntos
Autofagia/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Oxirredução/efeitos dos fármacos
9.
Nat Commun ; 12(1): 4447, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290243

RESUMO

Tryptophan catabolism is a major metabolic pathway utilized by several professional and non-professional antigen presenting cells to maintain immunological tolerance. Here we report that 3-hydroxy-L-kynurenamine (3-HKA) is a biogenic amine produced via an alternative pathway of tryptophan metabolism. In vitro, 3-HKA has an anti-inflammatory profile by inhibiting the IFN-γ mediated STAT1/NF-κΒ pathway in both mouse and human dendritic cells (DCs) with a consequent decrease in the release of pro-inflammatory chemokines and cytokines, most notably TNF, IL-6, and IL12p70. 3-HKA has protective effects in an experimental mouse model of psoriasis by decreasing skin thickness, erythema, scaling and fissuring, reducing TNF, IL-1ß, IFN-γ, and IL-17 production, and inhibiting generation of effector CD8+ T cells. Similarly, in a mouse model of nephrotoxic nephritis, besides reducing inflammatory cytokines, 3-HKA improves proteinuria and serum urea nitrogen, overall ameliorating immune-mediated glomerulonephritis and renal dysfunction. Overall, we propose that this biogenic amine is a crucial component of tryptophan-mediated immune tolerance.


Assuntos
Aminas Biogênicas/farmacologia , Imunomodulação/efeitos dos fármacos , Cinurenina/análogos & derivados , Animais , Aminas Biogênicas/metabolismo , Aminas Biogênicas/uso terapêutico , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Células Endoteliais , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação , Interferon gama/farmacologia , Cinurenina/metabolismo , Cinurenina/farmacologia , Cinurenina/uso terapêutico , Camundongos , NF-kappa B/metabolismo , Nefrite/tratamento farmacológico , Nefrite/imunologia , Psoríase/tratamento farmacológico , Psoríase/imunologia , Triptofano/metabolismo
10.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281239

RESUMO

HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that Hops heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes. Specifically, alterations in HOPS levels caused significant defects in the induction of apoptosis, including a reduction in p53 protein level and percentage of apoptotic cells. We also analyzed the effect of reduced HOPS levels on the DNA-damage response by examining the transcript profiles of p53-dependent genes, showing a suggestive deregulation of the mRNA levels for a number of p53-dependent genes. Taken together, these results show an interesting haploinsufficiency effect mediated by Hops monoallelic deletion, which appears to be enough to destabilize the p53 protein and its functions. Finally, these data indicate a novel role for Hops as a tumor-suppressor gene in DNA damage repair in mammalian cells.


Assuntos
Apoptose , Reparo do DNA , Haploinsuficiência , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Dano ao DNA , Feminino , Heterozigoto , Masculino , Camundongos
11.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924971

RESUMO

The Aryl hydrocarbon receptor (AhR) is a critical regulator of both innate and adaptive immune responses, with potent immunomodulatory effects that makes this receptor an attractive molecular target for novel therapeutics. Accumulating evidence indicates that diverse-both host's and microbial-tryptophan metabolites profoundly regulate the immune system in the host via AhR, promoting either tolerance or immunity, largely as a function of the qualitative and quantitative nature of the metabolites being contributed by either source. Additional findings indicate that host and microbiota-derived tryptophan metabolic pathways can influence the outcome of immune responses to tumors. Here, we review recent studies on the role and modalities of AhR activation by various ligands, derived from either host-cell or microbial-cell tryptophan metabolic pathways, in the regulation of immune responses. Moreover, we highlight potential implications of those ligands and pathways in tumor immunotherapy, with particular relevance to checkpoint-blockade immune intervention strategies.


Assuntos
Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Animais , Humanos , Imunoterapia , Ligantes , Neoplasias/terapia
12.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451129

RESUMO

The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Descoberta de Drogas , Ligantes , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Transporte , Descoberta de Drogas/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação , Ligação Proteica , Receptores de Hidrocarboneto Arílico/genética , Fatores de Transcrição/metabolismo
13.
Swiss Med Wkly ; 150: w20222, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330284

RESUMO

The cellular prion protein (PrPC), a cell surface glycoprotein originally identified for its central role in prion diseases (also called transmissible spongiform encephalopathies), has recently been implicated in the pathogenesis of other neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases, by acting as a toxicity-transducing receptor for different misfolded protein isoforms, or in some case by exerting neuroprotective effects. Interestingly, PrPC has also been reported to play unexpected functions outside the nervous system, for example by contributing to myelin homeostasis, regulating specific processes of the immune system and participating in various aspects of cancer progression. Collectively, these observations point to a much broader role for PrPC in physiological and disease processes than originally assumed. In this manuscript, we provide an overview of what is known about the role of PrPC beyond prion disorders and discuss the potential implications of targeting this protein in different diseases.


Assuntos
Doença de Parkinson , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas
14.
Front Immunol ; 11: 292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226425

RESUMO

Endotoxin tolerance aims at opposing hyperinflammatory responses to lipopolysaccharide (LPS) exposure. The aryl hydrocarbon receptor (AhR) participates in protection against LPS-mediated tissue damage, as it plays a necessary role in restraining the proinflammatory action of IL-1ß and TNF-α while fostering the expression of protective TGF-ß. TGF-ß, in turn, promotes durable expression of the immune regulatory enzyme indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 degrades L-tryptophan to L-kynurenine-an activating ligand for AhR-thus establishing a feed-forward loop. In this study, we further demonstrate that L-kynurenine also promotes the dissociation of the Src kinase-AhR cytosolic complex, leading to the activation of both genomic and non-genomic events in conventional dendritic cells (cDCs) primed with LPS. Specifically, the Src kinase, by phosphorylating the downstream target IDO1, triggers IDO1's signaling ability, which results in enhanced production of TGF-ß, an event key to establishing full endotoxin tolerance. We demonstrated that exogenous L-kynurenine can substitute for the effects of continued or repeated LPS exposure and that the AhR-Src-IDO1 axis represents a critical step for the transition from endotoxin susceptibility to tolerance. Moreover, much like fully endotoxin-tolerant dendritic cells (DCs) (i.e., treated twice with LPS in vitro), DCs-treated once with LPS in vitro and then with kynurenine-confer resistance on naïve recipients to an otherwise lethal LPS challenge. This may have clinical implications under conditions in which pharmacologically induced onset of endotoxin tolerance is a therapeutically desirable event.


Assuntos
Células Dendríticas/efeitos dos fármacos , Cinurenina/farmacologia , Lipopolissacarídeos/toxicidade , Transferência Adotiva , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteína Tirosina Quinase CSK/fisiologia , Células Cultivadas , Células Dendríticas/imunologia , Tolerância a Medicamentos , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/fisiologia , Fator de Crescimento Transformador beta/biossíntese
15.
Proc Natl Acad Sci U S A ; 117(7): 3848-3857, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024760

RESUMO

l-tryptophan (Trp), an essential amino acid for mammals, is the precursor of a wide array of immunomodulatory metabolites produced by the kynurenine and serotonin pathways. The kynurenine pathway is a paramount source of several immunoregulatory metabolites, including l-kynurenine (Kyn), the main product of indoleamine 2,3-dioxygenase 1 (IDO1) that catalyzes the rate-limiting step of the pathway. In the serotonin pathway, the metabolite N-acetylserotonin (NAS) has been shown to possess antioxidant, antiinflammatory, and neuroprotective properties in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, little is known about the exact mode of action of the serotonin metabolite and the possible interplay between the 2 Trp metabolic pathways. Prompted by the discovery that NAS neuroprotective effects in EAE are abrogated in mice lacking IDO1 expression, we investigated the NAS mode of action in neuroinflammation. We found that NAS directly binds IDO1 and acts as a positive allosteric modulator (PAM) of the IDO1 enzyme in vitro and in vivo. As a result, increased Kyn will activate the ligand-activated transcription factor aryl hydrocarbon receptor and, consequently, antiinflammatory and immunoregulatory effects. Because NAS also increased IDO1 activity in peripheral blood mononuclear cells of a significant proportion of MS patients, our data may set the basis for the development of IDO1 PAMs as first-in-class drugs in autoimmune/neuroinflammatory diseases.


Assuntos
Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Regulação Alostérica , Sítio Alostérico , Animais , Biocatálise , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos Knockout , Esclerose Múltipla/enzimologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Serotonina/análogos & derivados , Serotonina/química , Serotonina/metabolismo , Triptofano/metabolismo
16.
Front Immunol ; 10: 1973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481962

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway. In cells overexpressing NCOA7 and AhR, the presence of 3-HAA increased the association of the two molecules and enhanced Kyn-driven, AhR-dependent gene transcription. Physiologically, conventional (cDCs) but not plasmacytoid DCs or other immune cells expressed high levels of NCOA7. In cocultures of CD4+ T cells with cDCs, the co-addition of Kyn and 3-HAA significantly increased the induction of Foxp3+ regulatory T cells and the production of immunosuppressive transforming growth factor ß in an NCOA7-dependent fashion. Thus, the co-presence of NCOA7 and the Trp metabolite 3-HAA can selectively enhance the activation of ubiquitary AhR in cDCs and consequent immunoregulatory effects. Because NCOA7 is often overexpressed and/or mutated in tumor microenvironments, our current data may provide evidence for a new immune check-point mechanism based on Trp metabolism and AhR.


Assuntos
Ácido 3-Hidroxiantranílico/metabolismo , Células Dendríticas/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Células Dendríticas/imunologia , Feminino , Humanos , Cinurenina/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Linfócitos T Reguladores/imunologia
17.
Eur J Med Chem ; 182: 111624, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445234

RESUMO

This work describes the rational discovery of novel chemotypes of p38α MAPK inhibitors using a funnel approach consisting of several computer-aided drug discovery methods and biological experiments. Among the identified hits, four compounds belonging to different chemical families showed IC50 values lower than 10 µM. In particular, the 1,4-benzodioxane derivative 5 turned out to be a potent and efficient p38α MAPK inhibitor having IC50 = 0.07 µM, and LEexp and LipE values of 0.38 and 4.8, respectively; noteworthy, the compound had also a promising kinase selectivity profile and the capability to suppress p38α MAPK effects in human immune cells. Overall, the collected findings highlight that the applied strategy has been successful in generating chemical novelty in the inhibitor kinase field, providing suitable chemical candidates for further inhibitor optimization.


Assuntos
Descoberta de Drogas , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Voluntários Saudáveis , Humanos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
18.
Rev Med Virol ; 29(4): e2048, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31265195

RESUMO

Seropositivity for HSV reaches more than 70% within the world population, and yet no approved vaccine exists. While HSV1 is responsible for keratitis, encephalitis, and labialis, HSV2 carriers have a high susceptibility to other STD infections, such as HIV. Induction of antiviral innate immune responses upon infection depends on a family of pattern recognition receptors called Toll-like receptors (TLR). TLRs bridge innate and adaptive immunity by sensing virus infection and activating antiviral immune responses. HSV adopts smart tricks to evade innate immunity and can also manipulate TLR signaling to evade the immune system or even confer destructive effects in favor of virus replication. Here, we review mechanisms by which HSV can trick TLR signaling to impair innate immunity. Then, we analyze the role of HSV-mediated molecular cues, in particular, NF-κB signaling, in promoting protective versus destructive effects of TLRs. Finally, TLR-based therapeutic opportunities with the goal of preventing or treating HSV infection will be discussed.


Assuntos
Terapia Biológica/métodos , Herpes Simples/imunologia , Herpes Simples/terapia , Imunidade Inata , Simplexvirus/imunologia , Receptores Toll-Like/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Evasão da Resposta Imune , Simplexvirus/patogenicidade
19.
Nat Commun ; 10(1): 1780, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992428

RESUMO

Influenza infection increases the incidence of myocardial infarction but the reason is unknown. Platelets mediate vascular occlusion through thrombotic functions but are also recognized to have immunomodulatory activity. To determine if platelet processes are activated during influenza infection, we collected blood from 18 patients with acute influenza infection. Microscopy reveals activated platelets, many containing viral particles and extracellular-DNA associated with platelets. To understand the mechanism, we isolate human platelets and treat them with influenza A virus. Viral-engulfment leads to C3 release from platelets as a function of TLR7 and C3 leads to neutrophil-DNA release and aggregation. TLR7 specificity is confirmed in murine models lacking the receptor, and platelet depletion models support platelet-mediated C3 and neutrophil-DNA release post-influenza infection. These findings demonstrate that the initial intrinsic defense against influenza is mediated by platelet-neutrophil cross-communication that tightly regulates host immune and complement responses but can also lead to thrombotic vascular occlusion.


Assuntos
Plaquetas/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Ativação Plaquetária/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Complemento C3/imunologia , Complemento C3/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Humana/sangue , Influenza Humana/virologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neutrófilos/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo
20.
Nat Commun ; 9(1): 4098, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291246

RESUMO

Gene therapy mediated by recombinant adeno-associated virus (AAV) vectors is a promising treatment for systemic monogenic diseases. However, vector immunogenicity represents a major limitation to gene transfer with AAV vectors, particularly for vector re-administration. Here, we demonstrate that synthetic vaccine particles encapsulating rapamycin (SVP[Rapa]), co-administered with AAV vectors, prevents the induction of anti-capsid humoral and cell-mediated responses. This allows successful vector re-administration in mice and nonhuman primates. SVP[Rapa] dosed with AAV vectors reduces B and T cell activation in an antigen-selective manner, inhibits CD8+ T cell infiltration in the liver, and efficiently blocks memory T cell responses. SVP[Rapa] immunomodulatory effects can be transferred from treated to naive mice by adoptive transfer of splenocytes, and is inhibited by depletion of CD25+ T cells, suggesting a role for regulatory T cells. Co-administration of SVP[Rapa] with AAV vector represents a powerful strategy to modulate vector immunogenicity and enable effective vector re-administration.


Assuntos
Dependovirus/imunologia , Terapia Genética , Vetores Genéticos/imunologia , Imunossupressores/administração & dosagem , Sirolimo/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...