Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 491
Filtrar
1.
Phys Rev Lett ; 132(9): 098301, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489657

RESUMO

Spontaneous phase separation, or demixing, is important in biological phenomena such as cell sorting. In particle-based models, an open question is whether differences in diffusivity can drive such demixing. While differential-diffusivity-induced phase separation occurs in mixtures with a packing fraction up to 0.7 [S. N. Weber et al. Binary mixtures of particles with different diffusivities demix, Phys. Rev. Lett. 116, 058301 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.058301], here we investigate whether demixing persists at even higher densities relevant for cells. For particle packing fractions between 0.7 and 1.0 the system demixes, but at packing fractions above unity the system remains mixed, exposing re-entrant behavior in the phase diagram that occurs when phase separation can no longer drive a change in entropy production at high densities. We also find that a confluent Voronoi model for tissues does not phase separate, consistent with particle-based simulations.

2.
Nat Cell Biol ; 26(2): 207-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38302719

RESUMO

Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. An excellent paradigm to understand the coupling of these processes is mammalian hair follicle development, which is initiated by the formation of an epithelial invagination-termed placode-that coincides with the emergence of a designated hair follicle stem cell population. The mechanisms directing the deformation of the epithelium, cell state transitions and physical compartmentalization of the placode are unknown. Here we identify a key role for coordinated mechanical forces stemming from contractile, proliferative and proteolytic activities across the epithelial and mesenchymal compartments in generating the placode structure. A ring of fibroblast cells gradually wraps around the placode cells to generate centripetal contractile forces, which, in collaboration with polarized epithelial myosin activity, promote elongation and local tissue thickening. These mechanical stresses further enhance compartmentalization of Sox9 expression to promote stem cell positioning. Subsequently, proteolytic remodelling locally softens the basement membrane to facilitate a release of pressure on the placode, enabling localized cell divisions, tissue fluidification and epithelial invagination into the underlying mesenchyme. Together, our experiments and modelling identify dynamic cell shape transformations and tissue-scale mechanical cooperation as key factors for orchestrating organ formation.


Assuntos
Folículo Piloso , Mamíferos , Animais , Forma Celular , Epitélio , Morfogênese , Divisão Celular , Folículo Piloso/metabolismo
3.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226824

RESUMO

Under decompression, disordered solids undergo an unjamming transition where they become under-coordinated and lose their structural rigidity. The mechanical and vibrational properties of these materials have been an object of theoretical, numerical, and experimental research for decades. In the study of low-coordination solids, understanding the behavior and physical interpretation of observables that diverge near the transition is of particular importance. Several such quantities are length scales (ξ or l) that characterize the size of excitations, the decay of spatial correlations, the response to perturbations, or the effect of physical constraints in the boundary or bulk of the material. Additionally, the spatial and sample-to-sample fluctuations of macroscopic observables such as contact statistics or elastic moduli diverge approaching unjamming. Here, we discuss important connections between all of these quantities and present numerical results that characterize the scaling properties of sample-to-sample contact and shear modulus fluctuations in ensembles of low-coordination disordered sphere packings and spring networks. Overall, we highlight three distinct scaling regimes and two crossovers in the disorder quantifiers χz and χµ as functions of system size N and proximity to unjamming δz. As we discuss, χX relates to the standard deviation σX of the sample-to-sample distribution of the quantity X (e.g., excess coordination δz or shear modulus µ) for an ensemble of systems. Importantly, χµ has been linked to experimentally accessible quantities that pertain to sound attenuation and the density of vibrational states in glasses. We investigate similarities and differences in the behaviors of χz and χµ near the transition and discuss the implications of our findings on current literature, unifying findings in previous studies.

4.
PLoS Comput Biol ; 20(1): e1011724, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38181065

RESUMO

An important open question in the modeling of biological tissues is how to identify the right scale for coarse-graining, or equivalently, the right number of degrees of freedom. For confluent biological tissues, both vertex and Voronoi models, which differ only in their representation of the degrees of freedom, have effectively been used to predict behavior, including fluid-solid transitions and cell tissue compartmentalization, which are important for biological function. However, recent work in 2D has hinted that there may be differences between the two models in systems with heterotypic interfaces between two tissue types, and there is a burgeoning interest in 3D tissue models. Therefore, we compare the geometric structure and dynamic sorting behavior in mixtures of two cell types in both 3D vertex and Voronoi models. We find that while the cell shape indices exhibit similar trends in both models, the registration between cell centers and cell orientation at the boundary are significantly different between the two models. We demonstrate that these macroscopic differences are caused by changes to the cusp-like restoring forces introduced by the different representations of the degrees of freedom at the boundary, and that the Voronoi model is more strongly constrained by forces that are an artifact of the way the degrees of freedom are represented. This suggests that vertex models may be more appropriate for 3D simulations of tissues with heterotypic contacts.


Assuntos
Modelos Biológicos , Movimento Celular , Forma Celular
5.
J Adv Nurs ; 79(11): 4228-4237, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548346

RESUMO

AIM: In the context of widening societal diversity, culturally and linguistically diverse patients continue to experience inequities in healthcare access and deficiencies in standards of nursing care. Re-framing culturally responsive care as a complex intervention spanning multiple interacting factors at micro, meso and macro levels is an essential prerequisite for addressing knowledge translation gaps into everyday nursing practice. To this end, this paper proposes and explicates the potential of applying synergistic participatory implementation methodologies for developing effective implementation strategies with impact at individual and wider structural levels. DESIGN: Discussion Paper. DATA SOURCES: A co-design case study is presented as an example of combining normalization process theory and participatory learning and action to investigate and support the implementation of culturally responsive care in general practice nursing. IMPLICATIONS FOR NURSING: Enacting culturally responsive health care is inherently complex in that it is influenced by multiple interacting factors. Viewing culturally responsive care as a complex intervention and incorporating a synergistic participatory implementation science approach offers possibilities for addressing the documented shortcomings in the implementation of culturally responsive nursing care. CONCLUSION: There is a need to move away from conventional approaches to conceptualizing and generating evidence on culturally responsive care. Incorporating participatory implementation methodologies can provide a new lens to investigate and support whole system implementation strategies. IMPACT: The combination of participatory and implementation methodologies is both theoretically and empirically informed. Engaging stakeholders in the co-design and co-production of evidence and solutions to long standing problems has the potential to increase the likelihood of influencing iterative and sustainable implementation and changes to clinical practice and systems. PATIENT OR PUBLIC CONTRIBUTION: This work is part of a wider programme of participatory health research on migrant health, partnering with a non-governmental organization that supports migrants.


Assuntos
Pesquisa Participativa Baseada na Comunidade , Migrantes , Humanos , Ciência da Implementação , Acessibilidade aos Serviços de Saúde , Aprendizagem
6.
ArXiv ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37332569

RESUMO

An important open question in the modeling of biological tissues is how to identify the right scale for coarse-graining, or equivalently, the right number of degrees of freedom. For confluent biological tissues, both vertex and Voronoi models, which differ only in their representation of the degrees of freedom, have effectively been used to predict behavior, including fluid-solid transitions and cell tissue compartmentalization, which are important for biological function. However, recent work in 2D has hinted that there may be differences between the two models in systems with heterotypic interfaces between two tissue types, and there is a burgeoning interest in 3D tissue models. Therefore, we compare the geometric structure and dynamic sorting behavior in mixtures of two cell types in both 3D vertex and Voronoi models. We find that while the cell shape indices exhibit similar trends in both models, the registration between cell centers and cell orientation at the boundary are significantly different between the two models. We demonstrate that these macroscopic differences are caused by changes to the cusp-like restoring forces introduced by the different representations of the degrees of freedom at the boundary, and that the Voronoi model is more strongly constrained by forces that are an artifact of the way the degrees of freedom are represented. This suggests that vertex models may be more appropriate for 3D simulations of tissues with heterotypic contacts.

7.
Phys Rev Lett ; 130(13): 130002, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067323

RESUMO

The field of soft matter physics has expanded rapidly over the past several decades, as physicists realize that a broad set of materials and systems are amenable to a physical understanding based on the interplay of entropy, elasticity, and geometry. The fields of biological physics and the physics of living systems have similarly emerged as bona fide independent areas of physics in part because tools from molecular and cell biology and optical physics allow scientists to make new quantitative measurements to test physical principles in living systems. This Essay will highlight two exciting future challenges I see at the intersection of these two fields: characterizing emergent behavior and harnessing actuation in highly deformable active objects. I will attempt to show how this topic is a natural extension of older and more recent discoveries and why I think it is likely to unfurl into a wide range of projects that can transform both fields. Progress in this area will enable new platforms for creating adaptive smart materials that can execute large-scale changes in shape in response to stimuli and improve our understanding of biological function, potentially allowing us to identify new targets for fighting disease. Part of a series of Essays which concisely present author visions for the future of their field.


Assuntos
Biofísica , Biofísica/tendências
8.
Phys Rev E ; 107(3-1): 034902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37072969

RESUMO

We study plastic strain during individual avalanches in overdamped particle-scale molecular dynamics (MD) and mesoscale elastoplastic models (EPM) for amorphous solids sheared in the athermal quasistatic limit. We show that the spatial correlations in plastic activity exhibit a short length scale that grows as t^{3/4} in MD and ballistically in EPM, which is generated by mechanical excitation of nearby sites not necessarily close to their stability thresholds, and a longer lengthscale that grows diffusively for both models and is associated with remote marginally stable sites. These similarities in spatial correlations explain why simple EPMs accurately capture the size distribution of avalanches observed in MD, though the temporal profiles and dynamical critical exponents are quite different.

9.
Biophys J ; 121(23): 4624-4634, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36299235

RESUMO

Collective chemotaxis, where single cells cannot climb a biochemical signaling gradient but clusters of cells can, has been observed in different biological contexts, including confluent tissues where there are no gaps or overlaps between cells. Although particle-based models have been developed that predict important features of collective chemotaxis, the mechanisms in those models depend on particle overlaps, and so it remains unclear if they can explain behavior in confluent systems. Here, we develop an open-source code that couples a two-dimensional Voronoi simulation for confluent cell mechanics to a dynamic chemical signal that can diffuse, advect, and/or degrade and use the code to study potential mechanisms for collective chemotaxis in cellular monolayers. We first study the impact of advection on collective chemotaxis and delineate a regime where advective terms are important. Next, we investigate two possible chemotactic mechanisms, contact inhibition of locomotion and heterotypic interfacial tension, and demonstrate that both can drive collective chemotaxis in certain parameter regimes. We further demonstrate that the scaling behavior of cluster motion is well captured by simple analytic theories.

10.
Proc Natl Acad Sci U S A ; 119(19): e2117622119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35512090

RESUMO

SignificanceMany protocols used in material design and training have a common theme: they introduce new degrees of freedom, often by relaxing away existing constraints, and then evolve these degrees of freedom based on a rule that leads the material to a desired state at which point these new degrees of freedom are frozen out. By creating a unifying framework for these protocols, we can now understand that some protocols work better than others because the choice of new degrees of freedom matters. For instance, introducing particle sizes as degrees of freedom to the minimization of a jammed particle packing can lead to a highly stable state, whereas particle stiffnesses do not have nearly the same impact.

11.
Soft Matter ; 18(12): 2394-2406, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266483

RESUMO

Under applied shear strain, granular and amorphous materials deform via particle rearrangements, which can be small and localized or organized into system-spanning avalanches. While the statistical properties of avalanches under quasi-static shear are well-studied, the dynamics during avalanches is not. In numerical simulations of sheared soft spheres, we find that avalanches can be decomposed into bursts of localized deformations, which we identify using an extension of persistent homology methods. We also study the linear response of unstable systems during an avalanche, demonstrating that eigenvalue dynamics are highly complex during such events, and that the most unstable eigenvector is a poor predictor of avalanche dynamics. Instead, we modify existing tools that identify localized excitations in stable systems, and apply them to these unstable systems with non-positive definite Hessians, quantifying the evolution of such excitations during avalanches. We find that bursts of localized deformations in the avalanche almost always occur at localized excitations identified using the linear spectrum. These new tools will provide an improved framework for validating and extending mesoscale elastoplastic models that are commonly used to explain avalanche statistics in glasses and granular matter.

12.
Phys Rev E ; 105(2-2): 025004, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291184

RESUMO

This is the second paper devoted to energetic rigidity, in which we apply our formalism to examples in two dimensions: Underconstrained random regular spring networks, vertex models, and jammed packings of soft particles. Spring networks and vertex models are both highly underconstrained, and first-order constraint counting does not predict their rigidity, but second-order rigidity does. In contrast, spherical jammed packings are overconstrained and thus first-order rigid, meaning that constraint counting is equivalent to energetic rigidity as long as prestresses in the system are sufficiently small. Aspherical jammed packings on the other hand have been shown to be jammed at hypostaticity, which we use to argue for a modified constraint counting for systems that are energetically rigid at quartic order.

13.
Phys Rev E ; 105(2-2): 025003, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291185

RESUMO

Rigidity regulates the integrity and function of many physical and biological systems. This is the first of two papers on the origin of rigidity, wherein we propose that "energetic rigidity," in which all nontrivial deformations raise the energy of a structure, is a more useful notion of rigidity in practice than two more commonly used rigidity tests: Maxwell-Calladine constraint counting (first-order rigidity) and second-order rigidity. We find that constraint counting robustly predicts energetic rigidity only when the system has no states of self-stress. When the system has states of self-stress, we show that second-order rigidity can imply energetic rigidity in systems that are not considered rigid based on constraint counting, and is even more reliable than shear modulus. We also show that there may be systems for which neither first- nor second-order rigidity imply energetic rigidity. The formalism of energetic rigidity unifies our understanding of mechanical stability and also suggests new avenues for material design.

14.
Soft Matter ; 18(7): 1540-1553, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107478

RESUMO

In amorphous solids subject to shear or thermal excitation, so-called structural indicators have been developed that predict locations of future plasticity or particle rearrangements. An open question is whether similar tools can be used in dense active materials, but a challenge is that under most circumstances, active systems do not possess well-defined solid reference configurations. We develop a computational model for a dense active crowd attracted to a point of interest, which does permit a mechanically stable reference state in the limit of infinitely persistent motion. Previous work on a similar system suggested that the collective motion of crowds could be predicted by inverting a matrix of time-averaged two-particle correlation functions. Seeking a first-principles understanding of this result, we demonstrate that this active matter system maps directly onto a granular packing in the presence of an external potential, and extend an existing structural indicator based on linear response to predict plasticity in the presence of noisy dynamics. We find that the strong pressure gradient necessitated by the directed activity, as well as a self-generated free boundary, strongly impact the linear response of the system. In low-pressure regions the linear-response-based indicator is predictive, but it does not work well in the high-pressure interior of our active packings. Our findings motivate and inform future work that could better formulate structure-dynamics predictions in systems with strong pressure gradients.

15.
Soft Matter ; 18(11): 2168-2175, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35212696

RESUMO

In development and homeostasis, multi-cellular systems exhibit spatial and temporal heterogeneity in their biochemical and mechanical properties. Nevertheless, it remains unclear how spatiotemporally heterogeneous forces affect the dynamical and mechanical properties of confluent tissue. To address this question, we study the dynamical behavior of the two-dimensional cellular vertex model for epithelial monolayers in the presence of fluctuating cell-cell interfacial tensions, which is a biologically relevant source of mechanical spatiotemporal heterogeneity. In particular, we investigate the effects of the amplitude and persistence time of fluctuating tension on the tissue dynamics. We unexpectedly find that the long-time diffusion constant describing cell rearrangements depends non-monotonically on the persistence time, while it increases monotonically as the amplitude increases. Our analysis indicates that at low and intermediate persistence times tension fluctuations drive motion of vertices and promote cell rearrangements, while at the highest persistence times the tension in the network evolves so slowly that rearrangements become rare.


Assuntos
Modelos Biológicos , Fenômenos Físicos
16.
Phys Rev E ; 104(4-1): 044905, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781437

RESUMO

The origin of several emergent mechanical and dynamical properties of structural glasses is often attributed to populations of localized structural instabilities, coined quasilocalized modes (QLMs). Under a restricted set of circumstances, glassy QLMs can be revealed by analyzing computer glasses' vibrational spectra in the harmonic approximation. However, this analysis has limitations due to system-size effects and hybridization processes with low-energy phononic excitations (plane waves) that are omnipresent in elastic solids. Here we overcome these limitations by exploring the spectrum of a linear operator defined on the space of particle interactions (bonds) in a disordered material. We find that this bond-force-response operator offers a different interpretation of QLMs in glasses and cleanly recovers some of their important statistical and structural features. The analysis presented here reveals the dependence of the number density (per frequency) and spatial extent of QLMs on material preparation protocol (annealing). Finally, we discuss future research directions and possible extensions of this work.

17.
Curr Opin Cell Biol ; 72: 146-155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461581

RESUMO

Collective cell motility is crucial to many biological processes including morphogenesis, wound healing, and cancer invasion. Recently, the biology and biophysics communities have begun to use the term 'cell jamming' to describe the collective arrest of cell motion in tissues. Although this term is widely used, the underlying mechanisms are varied. In this review, we highlight three independent mechanisms that can potentially drive arrest of cell motion - crowding, tension-driven rigidity, and reduction of fluctuations - and propose a framework that connects all three. Because multiple mechanisms may be operating simultaneously, this emphasizes that experiments should strive to identify which mechanism dominates in a given situation. We also discuss how specific cell-scale and molecular-scale biological processes, such as cell-cell and cell-substrate interactions, control aspects of these underlying physical mechanisms.


Assuntos
Comunicação Celular , Cicatrização , Biologia , Movimento Celular , Morfogênese
18.
Cells Dev ; 168: 203718, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34273601

RESUMO

The left-right organizer in zebrafish embryos, Kupffer's Vesicle (KV), is a simple organ that undergoes programmed asymmetric cell shape changes that are necessary to establish the left-right axis of the embryo. We use simulations and experiments to investigate whether 3D mechanical drag forces generated by the posteriorly-directed motion of the KV through the tailbud tissue are sufficient to drive such shape changes. We develop a fully 3D vertex-like (Voronoi) model for the tissue architecture, and demonstrate that the tissue can generate drag forces and drive cell shape changes. Furthermore, we find that tailbud tissue presents a shear-thinning, viscoelastic behavior consistent with those observed in published experiments. We then perform live imaging experiments and particle image velocimetry analysis to quantify the precise tissue velocity gradients around KV as a function of developmental time. We observe robust velocity gradients around the KV, indicating that mechanical drag forces must be exerted on the KV by the tailbud tissue. We demonstrate that experimentally observed velocity fields are consistent with the viscoelastic response seen in simulations. This work also suggests that 3D viscoelastic drag forces could be a generic mechanism for cell shape change in other biological processes.


Assuntos
Padronização Corporal , Peixe-Zebra , Animais , Padronização Corporal/fisiologia , Forma Celular , Cílios/fisiologia , Organogênese
19.
PLoS Comput Biol ; 17(6): e1009049, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097706

RESUMO

Large-scale tissue deformation during biological processes such as morphogenesis requires cellular rearrangements. The simplest rearrangement in confluent cellular monolayers involves neighbor exchanges among four cells, called a T1 transition, in analogy to foams. But unlike foams, cells must execute a sequence of molecular processes, such as endocytosis of adhesion molecules, to complete a T1 transition. Such processes could take a long time compared to other timescales in the tissue. In this work, we incorporate this idea by augmenting vertex models to require a fixed, finite time for T1 transitions, which we call the "T1 delay time". We study how variations in T1 delay time affect tissue mechanics, by quantifying the relaxation time of tissues in the presence of T1 delays and comparing that to the cell-shape based timescale that characterizes fluidity in the absence of any T1 delays. We show that the molecular-scale T1 delay timescale dominates over the cell shape-scale collective response timescale when the T1 delay time is the larger of the two. We extend this analysis to tissues that become anisotropic under convergent extension, finding similar results. Moreover, we find that increasing the T1 delay time increases the percentage of higher-fold coordinated vertices and rosettes, and decreases the overall number of successful T1s, contributing to a more elastic-like-and less fluid-like-tissue response. Our work suggests that molecular mechanisms that act as a brake on T1 transitions could stiffen global tissue mechanics and enhance rosette formation during morphogenesis.


Assuntos
Modelos Biológicos , Reologia , Animais , Junções Intercelulares
20.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931504

RESUMO

The similarity in mechanical properties of dense active matter and sheared amorphous solids has been noted in recent years without a rigorous examination of the underlying mechanism. We develop a mean-field model that predicts that their critical behavior-as measured by their avalanche statistics-should be equivalent in infinite dimensions up to a rescaling factor that depends on the correlation length of the applied field. We test these predictions in two dimensions using a numerical protocol, termed "athermal quasistatic random displacement," and find that these mean-field predictions are surprisingly accurate in low dimensions. We identify a general class of perturbations that smoothly interpolates between the uncorrelated localized forces that occur in the high-persistence limit of dense active matter and system-spanning correlated displacements that occur under applied shear. These results suggest a universal framework for predicting flow, deformation, and failure in active and sheared disordered materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...