Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405892

RESUMO

Autophagic mechanisms that maintain nuclear envelope homeostasis are bulwarks to aging and disease. By leveraging 4D lattice light sheet microscopy and correlative light and electron tomography, we define a quantitative and ultrastructural timeline of a nuclear macroautophagy (nucleophagy) pathway in yeast. Nucleophagy initiates with a rapid local accumulation of the nuclear cargo adaptor Atg39 at the nuclear envelope adjacent to the nucleus-vacuole junction and is delivered to the vacuole in ~300 seconds through an autophagosome intermediate. Mechanistically, nucleophagy incorporates two consecutive and genetically defined membrane fission steps: inner nuclear membrane (INM) fission generates a lumenal vesicle in the perinuclear space followed by outer nuclear membrane (ONM) fission to liberate a double membraned vesicle to the cytosol. ONM fission occurs independently of phagophore engagement and instead relies surprisingly on dynamin-like protein1 (Dnm1), which is recruited to sites of Atg39 accumulation at the nuclear envelope. Loss of Dnm1 compromises nucleophagic flux by stalling nucleophagy after INM fission. Our findings reveal how nuclear and INM cargo are removed from an intact nucleus without compromising its integrity, achieved in part by a non-canonical role for Dnm1 in nuclear envelope remodeling.

2.
J Cell Biol ; 221(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36036741

RESUMO

The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms. Further, removal of entire sections of the NE requires elaborate membrane remodeling that is poorly understood. Nonetheless, recent work has made inroads into discovering specializations of cellular degradative machineries tailored to meeting the unique challenges imposed by the NE. In addition, cells have evolved mechanisms to surveil and repair the NE barrier to protect against the deleterious effects of a breach in NE integrity, in the form of either a ruptured NE or a dysfunctional NPC. Here, we synthesize the most recent work exploring NE quality control mechanisms across eukaryotes.


Assuntos
Membrana Nuclear , Poro Nuclear , Retículo Endoplasmático/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ubiquitina/metabolismo
3.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34714326

RESUMO

Mechanisms that turn over components of the nucleus and inner nuclear membrane (INM) remain to be fully defined. We explore how components of the INM are selected by a cytosolic autophagy apparatus through a transmembrane nuclear envelope-localized cargo adaptor, Atg39. A split-GFP reporter showed that Atg39 localizes to the outer nuclear membrane (ONM) and thus targets the INM across the nuclear envelope lumen. Consistent with this, sequence elements that confer both nuclear envelope localization and a membrane remodeling activity are mapped to the Atg39 lumenal domain; these lumenal motifs are required for the autophagy-mediated degradation of integral INM proteins. Interestingly, correlative light and electron microscopy shows that the overexpression of Atg39 leads to the expansion of the ONM and the enclosure of a network of INM-derived vesicles in the nuclear envelope lumen. Thus, we propose an outside-in model of nucleophagy where INM is delivered into vesicles in the nuclear envelope lumen, which can be targeted by the autophagosome.


Assuntos
Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Vesículas Citoplasmáticas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagossomos/ultraestrutura , Autofagia , Proteínas Relacionadas à Autofagia/química , Vesículas Citoplasmáticas/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Membrana Nuclear/ultraestrutura , Domínios Proteicos , Receptores Citoplasmáticos e Nucleares/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Relação Estrutura-Atividade , Fatores de Tempo , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Proteínas de Transporte Vesicular/metabolismo
4.
Dev Cell ; 56(18): 2539-2541, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34582769

RESUMO

Fatty acid saturation in phospholipid bilayers alters their fluidity; whether saturation impacts inner nuclear membrane function has never been addressed. In this issue of Developmental Cell, Romanauska and Köhler (2021) show that the inner nuclear membrane detoxifies itself of unsaturated fatty acids by shunting them into cytosolic lipid droplets.


Assuntos
Gorduras Insaturadas , Fluidez de Membrana , Ácidos Graxos , Ácidos Graxos Insaturados , Fosfolipídeos
5.
J Cell Biol ; 220(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33464310

RESUMO

Mechanisms that control nuclear membrane remodeling are essential to maintain the integrity of the nucleus but remain to be fully defined. Here, we identify a phosphatidic acid (PA)-binding capacity in the nuclear envelope (NE)-specific ESCRT, Chm7, in budding yeast. Chm7's interaction with PA-rich membranes is mediated through a conserved hydrophobic stretch of amino acids, which confers recruitment to the NE in a manner that is independent of but required for Chm7's interaction with the LAP2-emerin-MAN1 (LEM) domain protein Heh1 (LEM2). Consistent with the functional importance of PA binding, mutation of this region abrogates recruitment of Chm7 to membranes and abolishes Chm7 function in the context of NE herniations that form during defective nuclear pore complex (NPC) biogenesis. In fact, we show that a PA sensor specifically accumulates within these NE herniations. We suggest that local control of PA metabolism is important for ensuring productive NE remodeling and that its dysregulation may contribute to pathologies associated with defective NPC assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Membrana Nuclear/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Sequência Conservada , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Poro Nuclear/metabolismo , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA