Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798440

RESUMO

Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38575682

RESUMO

Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.

4.
Cell ; 187(7): 1801-1818.e20, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38471500

RESUMO

The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Metabolômica , Espectrometria de Massas em Tandem , Animais , Humanos , Ácidos e Sais Biliares/química , Metabolômica/métodos , Poliaminas , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Compostos Químicos
6.
mSystems ; 9(3): e0111923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319107

RESUMO

Skin microbiome can be altered in patients with atopic dermatitis (AD). An understanding of the changes from healthy to atopic skin can help develop new targets for treatment by identifying microbial and molecular biomarkers. This study investigates the skin microbiome and metabolome of healthy adult subjects and lesion (ADL) and non-lesion (ADNL) of AD patients by 16S rRNA gene sequencing and mass spectrometry, respectively. Samples from AD patients showed alterations in the diversity and composition of the skin microbiome, with ADL skin having the greatest divergence. Staphylococcus species, especially S. aureus, were significantly increased in AD patients. Metabolomic profiles were also different between the groups. Dipeptide derivatives are more abundant in ADL, which may be related to skin inflammation. Co-occurrence network analysis of the microbiome and metabolomics data revealed higher co-occurrence of metabolites and bacteria in healthy ADNL compared to ADL. S. aureus co-occurred with dipeptide derivatives in ADL, while phytosphingosine-derived compounds showed co-occurrences with commensal bacteria, for example, Paracoccus sp., Pseudomonas sp., Prevotella bivia, Lactobacillus iners, Anaerococcus sp., Micrococcus sp., Corynebacterium ureicelerivorans, Corynebacterium massiliense, Streptococcus thermophilus, and Roseomonas mucosa, in healthy and ADNL groups. Therefore, these findings provide valuable insights into how AD affects the human skin metabolome and microbiome.IMPORTANCEThis study provides valuable insight into changes in the skin microbiome and associated metabolomic profiles in an adult population with mild to moderate atopic dermatitis. It also identifies new therapeutic targets that may be useful for developing personalized treatments for individuals with atopic dermatitis based on their unique skin microbiome and metabolic profiles.


Assuntos
Dermatite Atópica , Microbiota , Adulto , Humanos , Dermatite Atópica/tratamento farmacológico , Staphylococcus aureus/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Metaboloma , Bactérias/genética , Dipeptídeos/uso terapêutico
7.
Nat Commun ; 14(1): 8488, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123557

RESUMO

Despite the increasing availability of tandem mass spectrometry (MS/MS) community spectral libraries for untargeted metabolomics over the past decade, the majority of acquired MS/MS spectra remain uninterpreted. To further aid in interpreting unannotated spectra, we created a nearest neighbor suspect spectral library, consisting of 87,916 annotated MS/MS spectra derived from hundreds of millions of MS/MS spectra originating from published untargeted metabolomics experiments. Entries in this library, or "suspects," were derived from unannotated spectra that could be linked in a molecular network to an annotated spectrum. Annotations were propagated to unknowns based on structural relationships to reference molecules using MS/MS-based spectrum alignment. We demonstrate the broad relevance of the nearest neighbor suspect spectral library through representative examples of propagation-based annotation of acylcarnitines, bacterial and plant natural products, and drug metabolism. Our results also highlight how the library can help to better understand an Alzheimer's brain phenotype. The nearest neighbor suspect spectral library is openly available for download or for data analysis through the GNPS platform to help investigators hypothesize candidate structures for unknown MS/MS spectra in untargeted metabolomics data.


Assuntos
Acesso à Informação , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Biblioteca Gênica , Análise por Conglomerados
8.
Sci Rep ; 13(1): 16349, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770593

RESUMO

White teeth can give confidence and tend to be associated with a healthier lifestyle in modern society. Therefore, tooth-bleaching strategies have been developed, including the use of hydrogen peroxide. Recently, peroxymonosulfate has been introduced as an alternative bleaching method to hydrogen peroxide. Although both chemicals are oxidizing agents, their effects on the molecular composition of the stained teeth are yet unknown. In this study, the molecular profiles of teeth bleached with hydrogen peroxide and peroxymonosulfate were compared using Liquid Chromatography-Tandem Mass Spectrometry. Statistical analyses were used to assess the samples. In addition, reference spectral libraries and in silico tools were used to perform metabolite annotation. Overall, principal component analysis showed a strong separation between control and hydrogen peroxide and peroxymonosulfate samples (p < 0.001). The analysis of molecular changes revealed amino acids and dipeptides in stained teeth samples after hydrogen peroxide and peroxymonosulfate treatments. Noteworthy, the two bleaching methods led to distinct molecular profiles. For example, diterpenoids were more prevalent after peroxymonosulfate treatment, while a greater abundance of alkaloids was detected after hydrogen peroxide treatment. Whereas non-bleached samples (controls) showed mainly lipids. Therefore, this study shows how two different tooth-whitening peroxides could affect the molecular profiles of human teeth.


Assuntos
Clareamento Dental , Descoloração de Dente , Humanos , Peróxido de Hidrogênio , Peróxidos , Clareamento Dental/métodos , Ureia
9.
RSC Adv ; 13(35): 24331-24332, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37583656

RESUMO

The Younger Researchers of the Brazilian Chemical Society committee supports early career researchers promoting communication, collaboration, education, networking, representation, and career development.

10.
Commun Biol ; 6(1): 896, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653089

RESUMO

The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.


Assuntos
Antozoários , Microbiota , Alga Marinha , Animais , Recifes de Corais , Simbiose , Metaboloma
11.
J Nat Prod ; 86(3): 621-632, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36848642

RESUMO

The Aedes aegypti (Diptera: Culicidae) mosquito is the vector of several arboviruses in tropical and subtropical areas of the globe, and synthetic pesticides remain the most widely used combat strategy. This study describes the investigation of secondary metabolites with larvicidal activity from the Malpighiaceae taxon using a metabolomic and bioactivity-based approach. The workflow initially consisted of a larvicidal screening of 394 extracts from the leaves of 197 Malpighiaceae samples, which were extracted using solvents of different polarity, leading to the selection of Heteropterys umbellata for the identification of active compounds. By employing untargeted mass spectrometry-based metabolomics and multivariate analyses (PCA and PLS-DA), it was possible to determine that the metabolic profiles of different plant organs and collection sites differed significantly. A bioguided approach led to the isolation of isochlorogenic acid A (1) and the nitropropanoyl glucosides karakin (2) and 1,2,3,6-tetrakis-O-[3-nitropropanoyl]-beta-glucopyranose (3). These nitro compounds exhibited larvicidal activity, possibly potentialized by synergistic effects of their isomers in chromatographic fractions. Additionally, targeted quantification of the isolated compounds in different extracts corroborated the untargeted results from the statistical analyses. These results support a metabolomic-guided approach in combination with classical phytochemical techniques to search for natural larvicidal compounds for arboviral vector control.


Assuntos
Aedes , Inseticidas , Animais , Extratos Vegetais/química , Inseticidas/química , Glicosídeos/farmacologia , Glicosídeos/análise , Larva , Mosquitos Vetores , Folhas de Planta/química , Espectrometria de Massas , Metabolômica
12.
Front Plant Sci ; 13: 854842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498703

RESUMO

Natural products produced by plants are one of the most investigated natural sources, which substantially contributed to the development of the natural products field. Even though these compounds are widely explored, the literature still lacks comprehensive investigations aiming to explore the evolution of secondary metabolites produced by plants, especially if classical methodologies are employed. The development of sensitive hyphenated techniques and computational tools for data processing has enabled the study of large datasets, being valuable assets for chemosystematic studies. Here, we describe a strategy for chemotaxonomic investigations using the Malpighiaceae botanical family as a model. Our workflow was based on MS/MS untargeted metabolomics, spectral searches, and recently described in silico classification tools, which were mapped into the latest molecular phylogeny accepted for this family. The metabolomic analysis revealed that different ionization modes and extraction protocols significantly impacted the chemical profiles, influencing the chemotaxonomic results. Spectral searches within public databases revealed several clades or genera-specific molecular families, being potential chemical markers for these taxa, while the in silico classification tools were able to expand the Malpighiaceae chemical space. The classes putatively annotated were used for ancestral character reconstructions, which recovered several classes of metabolites as homoplasies (i.e., non-exclusive) or synapomorphies (i.e., exclusive) for all sampled clades and genera. Our workflow combines several approaches to perform a comprehensive evolutionary chemical study. We expect it to be used on further chemotaxonomic investigations to expand chemical knowledge and reveal biological insights for compounds classes in different biological groups.

13.
Nat Rev Microbiol ; 20(3): 143-160, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34552265

RESUMO

Microbiotas are a malleable part of ecosystems, including the human ecosystem. Microorganisms affect not only the chemistry of their specific niche, such as the human gut, but also the chemistry of distant environments, such as other parts of the body. Mass spectrometry-based metabolomics is one of the key technologies to detect and identify the small molecules produced by the human microbiota, and to understand the functional role of these microbial metabolites. This Review provides a foundational introduction to common forms of untargeted mass spectrometry and the types of data that can be obtained in the context of microbiome analysis. Data analysis remains an obstacle; therefore, the emphasis is placed on data analysis approaches and integrative analysis, including the integration of microbiome sequencing data.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Microbiota/fisiologia , Animais , Humanos , Metaboloma/fisiologia
14.
Nat Prod Res ; 36(18): 4730-4734, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34809508

RESUMO

Eight phenolic compounds were isolated from Eugenia pyriformis leaves fraction by semi-preparative HPLC and characterized by Nuclear Magnetic Resonance (NMR) and mass spectrometry (ESI-MS). Five compounds were isolated and identified for the first time in E. pyriformis species, while this is the first report of the accumulation of isoquercitrin, quercitrin, and the aglycone quercetin in its leaves. E. pyriformis leaves and fruits extracts, as well as the compounds isolated from the leaves most active fraction, were evaluated for their antiglycation and antioxidant activities. The mixture of myricetin-3-O-(2″-O-galloyl)-α-L-rhamnoside and myricetin-3-O-(4″-O-galloyl)-α-L-rhamnoside showed the highest antiglycation activity. These results suggest that this species is a promising source of bioactive compounds. Further studies to investigate the inhibition of the glycation process in vivo are necessary to evaluate its use in the treatment and/or prevention of advanced glycation end-products (AGEs)-associated diseases.


Assuntos
Eugenia , Antioxidantes/química , Eugenia/química , Frutas/química , Extratos Vegetais/química , Folhas de Planta/química
15.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221356, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394012

RESUMO

Abstract In Brazil, research with natural products had a strong impulse when FAPESP supported the creation of the Laboratory of Chemistry of Natural Products of the Institute of Chemistry of USP (1966). In 1999, FAPESP launched the Research Program in the Characterization, Conservation, Restoration and Sustainable Use of Biodiversity (BIOTA-FAPESP), which intensified the sustainable exploitation of biodiversity, and which evolved to form the Biota Network for Bioprospection and Bioassays (BIOprospecTA), which integrates groups from all over the country, optimizing the use of the skills already installed for the bioprospecting of microorganisms, plants, invertebrates, vertebrates and marine organisms. Of the 104 projects related to plant sciences, 35 carried out bioprospection of Brazilian flora, belonging to the areas of Chemistry, Botany, Genetics, Plant Physiology, Plant Morphology, Plant (Chemo)taxonomy, Ecosystem Ecology, Plant Genetics. Physical Sciences, Forest Resources, Forestry Engineering, Agronomy, leading to thousands of publications, engagement of hundreds of students and a deeper understanding of natural products in different biological models through macromolecules analysis aided by computational and spectrometric strategies, in addition to pharmacological evaluations. The development of omics approaches led to a more comprehensive view of the chemical profile of an organism, and enabled integrated and concomitant studies of several samples, and faster annotation of known molecules, through the use of hyphenated and chemometric techniques, and molecular networking. This also helped to overcome the lack of information on the safety and efficacy of herbal preparations, in projects dealing with the standardization of herbal products, according to international standards. The BIOTA-FAPESP program has also focused on environmental aspects, in accordance with the principles of Green Chemistry and has had positive effects on international collaboration, on the number and impact of scientific publications and on partnership with companies, a crucial step to add value and expand the production chain of bioproducts. Also, the compilation, systematization and sharing of data were contemplated with the creation of the NUBBEDB database, of free access, and that integrates with international databases (ACD/labs, American Chemical Society - ACS), helping researchers and companies in the development from different areas of science, technology, strengthening the bioeconomy and subsidizing public policies.


Resumo No Brasil, as pesquisas com produtos naturais tiveram um forte impulso quando a FAPESP apoiou a criação do Laboratório de Química de Produtos Naturais do Instituto de Química da USP (1966). Em 1999, a FAPESP lançou o Programa de Pesquisa em Caracterização, Conservação, Restauração e Uso Sustentável da Biodiversidade (BIOTA-FAPESP), que intensificou a exploração sustentável da biodiversidade, e que evoluiu para formar a Rede Biota de Bioprospecção e Bioensaios (BIOprospecTA), que integra grupos de todo o país, otimizando o aproveitamento das competências já instaladas para a bioprospecção de microrganismos, plantas, invertebrados, vertebrados e organismos marinhos. Dos 104 projetos relacionados às ciências vegetais, 35 realizaram a bioprospecção da flora brasileira, em diversas áreas como Química, Botânica, Fisiologia e Morfologia Vegetal, (Quimio)taxonomia Vegetal, Ecologia de Ecossistemas, Genética Vegetal, Recursos Florestais, Engenharia Florestal, dentre outros, levando a milhares de publicações, ao engajamento de centenas de estudantes e ao entendimento mais profundo dos produtos naturais em diferentes modelos biológicos por meio da análise de micromoléculas auxiliada por estratégias computacionais e espectrométricas, além de avaliações farmacológicas. O desenvolvimento de abordagens ômicas ampliou a visão sobre perfil químico dos organismos, possibilitou o estudo integrado e concomitante de várias amostras, e a anotação mais rápida de moléculas conhecidas, por meio do uso de técnicas hifenadas, quimiométricas e redes moleculares. Isso também contribuiu para superar a falta de informação sobre a segurança e eficácia dos fitopreparados, em projetos que tratam da padronização de produtos fitoterápicos, de acordo com normas internacionais. O programa BIOTA-FAPESP também tem focado em aspectos ambientais, de acordo com os princípios da Química Verde e teve reflexos positivos na colaboração internacional, no número e no impacto das publicações científicas e na parceria com empresas, etapa crucial para agregar valor e expandir a cadeia produtiva de bioprodutos. Ainda, a compilação, sistematização e compartilhamento de dados foram contemplados com a criação da base de dados NUBBEDB, de livre acesso, e que se integra com bases internacionais (ACD/labs, American Chemical Society - ACS), auxiliando pesquisadores e empresas no desenvolvimento de diferentes áreas da ciência, tecnologia, fortalecendo a bioeconomia e subsidiando políticas públicas.

16.
Nat Commun ; 12(1): 3832, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158495

RESUMO

Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.


Assuntos
Biologia Computacional/métodos , Íons/metabolismo , Espectrometria de Massas/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Animais , Internet , Íons/química , Estrutura Molecular , Reprodutibilidade dos Testes , Software
17.
Food Chem ; 363: 130227, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34120053

RESUMO

Exploratory factor analysis was applied to determine the chemical differences between fruitbodies of three Agaricus subrufescens mushroom strains [from Japan (JP), Brazil (ABZ), and Belgium (T2)] grown with handmade and commercial supplements. The composition of the ABZ strain cultivated with agro-industrial waste supplement presented a high nutritional composition regarding the amounts of fibre and protein, similar to mushrooms cultivated with the commercial supplement. The chromatographic fingerprints obtained for T2 and JP strains grown with commercial supplements presented similar profiles compared to those cultivated with the supplement based on peanut and the mix of supplements. The chromatographic analysis also showed that the similarities are correlated with the relative abundance of antioxidant compounds annotated by HPLC-MS, such as vanillic acid deoxyhexoside, caffeic acid hexoside, catechin hexosemalonate, digallic acid, cinnamic acid derivative, and p-coumaroylmalic acid. This study showed that handmade supplements based on agro-industrial waste could be viable alternatives for replacing high-cost supplements.


Assuntos
Agaricus , Antioxidantes , Fibras na Dieta , Suplementos Nutricionais
18.
J Nat Prod ; 83(11): 3239-3249, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33196207

RESUMO

Proper chromatographic methods may reduce the challenges inherent in analyzing natural product extracts, especially when utilizing hyphenated detection techniques involving mass spectrometry. As there are many variations one can introduce during chromatographic method development, this can become a daunting and time-consuming task. To reduce the number of runs and time needed, the use of instrumental automatization and commercial software to apply Quality by Design and statistical analysis automatically can be a valuable approach to investigate complex matrices. To evaluate this strategy in the natural products workflow, a mixture of nine species from the family Malpighiaceae was investigated. By this approach, the entire data collection and method development procedure (comprising screening, optimization, and robustness simulation) was accomplished in only 4 days, resulting in very low limits of detection and quantification. The analysis of the individual extracts also proved the efficiency of the use of a mixture of extracts for this workflow. Molecular networking and library searches were used to annotate a total of 61 compounds, including O-glycosylated flavonoids, C-glycosylated flavonoids, quinic/shikimic acid derivatives, sterols, and other phenols, which were efficiently separated by the method developed. These results support the potential of statistical tools for chromatographic method optimization as an efficient approach to reduce time and maximize resources, such as solvents, to get proper chromatographic conditions.


Assuntos
Produtos Biológicos/química , Malpighiaceae/química , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Extratos Vegetais/química , Reprodutibilidade dos Testes , Especificidade da Espécie , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho
19.
Phytochem Anal ; 31(6): 747-755, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32428987

RESUMO

INTRODUCTION: Crotalaria spectabilis is an important species used as a pre-plant cover for soybean crops to control the proliferation of endoparasitic nematodes. Species from the Crotalaria genus are known for presenting pyrrolizidine alkaloids (PAs) in their composition, however, C. spectabilis is still considered chemically under-explored. OBJECTIVE: The goal of this manuscript is the development and validation of a method for PAs and flavonoids identification and quantification of C. spectabilis seeds and leaves, a toxic plant used for nematode proliferation control in soil, especially in soybean crops. MATERIALS AND METHODS: Seeds and leaves extracts were analysed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the identification of the compounds. RESULTS: PAs and phenolic compounds could be identified in both samples based on the MS/MS fragmentation pattern. Molecular formulas of the annotated compounds were confirmed by ultra-high-performace liquid chromatography-quadrupole time-of-flight (UHPLC-QToF), and monocrotaline could also be confirmed by standard comparison. The quantification of monocrotaline was performed by HPLC-MS/MS, resulting in 123 times higher monocrotaline content in seeds than in the leaves, which could explain its efficiency in combating nematode proliferation in soil. CONCLUSION: This was the first report of phenolic compounds in C. spectabilis. The current study highlights the importance of C. spectabilis for nematode control due to the presence of toxic PAs, and the employment of analytical techniques for identification and quantification of compounds present in the extracts.


Assuntos
Crotalaria , Alcaloides de Pirrolizidina , Cromatografia Líquida de Alta Pressão , Monocrotalina , Extratos Vegetais , Sementes , Espectrometria de Massas em Tandem
20.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987092

RESUMO

Benznidazole and nifurtimox, the only drugs available for the treatment of Chagas disease, have limited efficacy and have been associated with severe adverse side effects. Thus, there is an urgent need to find new biotargets for the identification of novel bioactive compounds against the parasite and with low toxicity. Silent information regulator 2 (Sir2) enzymes, or sirtuins, have emerged as attractive targets for the development of novel antitrypanosomatid agents. In the present work, we evaluated the inhibitory effect of natural compounds isolated from cashew nut (Anacardium occidentale, L. Anacardiaceae) against the target enzymes TcSir2rp1 and TcSir2rp3 as well as the parasite. Two derivates of cardol (1, 2), cardanol (3, 4), and anacardic acid (5, 6) were investigated. The two anacardic acids (5, 6) inhibited both TcSir2rp1 and TcSir2rp3, while the cardol compound (2) inhibited only TcSir2rp1. The most potent sirtuin inhibitor active against the parasite was the cardol compound (2), with an EC50 value of 12.25 µM, similar to that of benznidazole. Additionally, compounds (1, 4), which were inactive against the sirtuin targets, presented anti-T. cruzi effects. In conclusion, our results showed the potential of Anacardium occidentale compounds for the development of potential sirtuin inhibitors and anti-Trypanosoma cruzi agents.


Assuntos
Anacardium/química , Extratos Vegetais/farmacologia , Sirtuínas/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...