Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-513379

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has been responsible for a global pandemic. Monoclonal antibodies have been used as antiviral therapeutics, but have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs), and in deployment by the need for high doses. In this study, we leverage the MULTI-specific, multi-Affinity antiBODY (Multabody, MB) platform, derived from the human apoferritin protomer, to drive the multimerization of antibody fragments and generate exceptionally potent and broad SARS-CoV-2 neutralizers. CryoEM revealed a high degree of homogeneity for the core of these engineered antibody-like molecules at 2.1 [A] resolution. We demonstrate that neutralization potency improvements of the MB over corresponding IgGs translates into superior in vivo protection: in the SARS-CoV-2 mouse challenge model, comparable in vivo protection was achieved for the MB delivered at 30x lower dose compared to the corresponding IgGs. Furthermore, we show how MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding IgGs lose their ability to neutralize potently. Multiple mAb specificities could also be combined into a single MB molecule to expand the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-501141

RESUMO

The SARS-CoV-2 (COVID-19) global pandemic continuous to infect and kill millions while rapidly evolving new variants that are more transmissible and evading vaccine-elicited antibodies. Artemisia annua L. extracts have shown potency against all previously tested variants. Here we further queried extract efficacy against omicron and its recent subvariants. Using Vero E6 cells, we measured the in vitro efficacy (IC50) of stored (frozen) dried-leaf hot-water A. annua L. extracts of four cultivars (A3, BUR, MED, and SAM) against SARS-CoV-2 variants: original WA1 (WT), BA.1.1.529+R346K (omicron), BA.2, BA.2.12.1, and BA.4. IC50 values normalized to the extract artemisinin (ART) content ranged from 0.5-16.5 {micro}M ART. When normalized to dry mass of the extracted A. annua leaves, values ranged from 20-106 {micro}g. Although IC50 values for these new variants are slightly higher than those reported for previously tested variants, they were within limits of assay variation. There was no measurable loss of cell viability at leaf dry weights [≤]50 {micro}g of any cultivar extract. Results continue to indicate that oral consumption of A. annua hot-water extracts (tea infusions) could potentially provide a cost-effective approach to help stave off this pandemic virus and its rapidly evolving variants.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472719

RESUMO

The Omicron (B.1.1.529) variant of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 (coronavirus disease 2019) vaccines and antibody therapies4. This concern is amplified by the findings from our study. We found B.1.1.529 to be markedly resistant to neutralization by serum not only from convalescent patients, but also from individuals vaccinated with one of the four widely used COVID-19 vaccines. Even serum from persons vaccinated and boosted with mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies to all known epitope clusters on the spike protein, we noted that the activity of 17 of the 19 antibodies tested were either abolished or impaired, including ones currently authorized or approved for use in patients. In addition, we also identified four new spike mutations (S371L, N440K, G446S, and Q493R) that confer greater antibody resistance to B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-472236

RESUMO

The devastation caused by SARS-CoV-2 has made clear the importance of pandemic preparedness. To address future zoonotic outbreaks due to related viruses in the sarbecovirus subgenus, we identified a human monoclonal antibody, 10-40, that neutralized or bound all sarbecoviruses tested in vitro and protected against SARS-CoV-2 and SARS-CoV in vivo. Comparative studies with other receptor-binding domain (RBD)-directed antibodies showed 10-40 to have the greatest breadth against sarbecoviruses and thus its promise as an agent for pandemic preparedness. Moreover, structural analyses on 10-40 and similar antibodies not only defined an epitope cluster in the inner face of the RBD that is well conserved among sarbecoviruses, but also uncovered a new antibody class with a common CDRH3 motif. Our analyses also suggested that elicitation of this class of antibodies may not be overly difficult, an observation that bodes well for the development of a pan-sarbecovirus vaccine. One sentence summaryA monoclonal antibody that neutralizes or binds all sarbecoviruses tested and represents a reproducible antibody class.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-464307

RESUMO

The repeated emergence of highly pathogenic human coronaviruses as well as their evolving variants highlight the need to develop potent and broad-spectrum antiviral therapeutics and vaccines. By screening monoclonal antibodies (mAbs) isolated from COVID-19-convalescent patients, we found one mAb, 2-36, with cross-neutralizing activity against SARS-CoV. We solved the cryo-EM structure of 2-36 in complex with SARS-CoV-2 or SARS-CoV spike, revealing a highly conserved epitope in the receptor-binding domain (RBD). Antibody 2-36 neutralized not only all current circulating SARS-CoV-2 variants and SARS-COV, but also a panel of bat and pangolin sarbecoviruses that can use human angiotensin-converting enzyme 2 (ACE2) as a receptor. We selected 2-36-escape viruses in vitro and confirmed that K378T in SARS-CoV-2 RBD led to viral resistance. Taken together, 2-36 represents a strategic reserve drug candidate for the prevention and treatment of possible diseases caused by pre-emergent SARS-related coronaviruses. Its epitope defines a promising target for the development of a pan-sarbecovirus vaccine.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459260

RESUMO

Ethnopharmacological relevanceFor millennia in Southeast Asia, Artemisia annua L. was used to treat "fever". This medicinal plant is effective against numerous infectious microbial and viral diseases and is used by many global communities as a source of artemisinin derivatives that are first-line drugs to treat malaria. Aim of the StudyThe SARS-CoV-2 (Covid-19) global pandemic has killed millions and evolved numerous variants, with delta being the most transmissible to date and causing break-through infections of vaccinated individuals. We further queried the efficacy of A. annua cultivars against new variants. Materials and MethodsUsing Vero E6 cells, we measured anti-SARS-CoV-2 activity of dried-leaf hot-water A. annua extracts of four cultivars, A3, BUR, MED, and SAM, to determine their efficacy against five fully infectious variants of the virus: alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), and kappa (B.1.617.1). ResultsIn addition to being effective against the original wild type WA1, A. annua cultivars A3, BUR, MED and SAM were also potent against all five variants. IC50 and IC90 values based on measured artemisinin content ranged from 0.3-8.4 M and 1.4-25.0 M, respectively. The IC50 and IC90 values based on dried leaf weight (DW) used to make the tea infusions ranged from 11.0-67.7 g DW and 59.5-160.6 g DW, respectively. Cell toxicity was insignificant at a leaf dry weight of [≤]50 g in the extract of any cultivar. ConclusionsResults suggest that oral consumption of A. annua hot-water extracts (tea infusions), could provide a cost-effective therapy to help stave off the rapid global spread of these variants, buying time for broader implementation of vaccines.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261670

RESUMO

COVID-19 (coronavirus disease 2019) vaccines have been rapidly developed and deployed globally as a measure to combat the disease. These vaccines have been demonstrated to confer significant protection, but there have been reports of temporal decay in antibody titer. Furthermore, several variants have been identified with variable degrees of antibody resistance. These two factors suggest that a booster vaccination may be worthy of consideration. While such a booster dose has been studied as a series of three homologous vaccines in healthy individuals, to our knowledge, information on a heterologous regimen remains unreported, despite the practical benefits of such a scheme. Here, in this observational study, we investigated the serological profile of four healthy individuals who received two doses of the BNT162b2 vaccine, followed by a third booster dose with the Ad26.COV2.S vaccine. We found that while all individuals had spike-binding antibodies at each of the timepoints tested, there was an appreciable drop in titer by four months following the second vaccination. The third vaccine dose robustly increased titers beyond that of two vaccinations, and these elicited antibodies had neutralizing capability against all SARS-CoV-2 strains tested in both a recombinant vesicular stomatitis virus-based pseudovirus assay and an authentic SARS-CoV-2 assay, except for one individual against B.1.351 in the latter assay. Thus, a third COVID-19 vaccine dose in healthy individuals promoted not just neutralizing antibody potency, but also induced breadth against dominant SARS-CoV-2 variants. SignificanceCOVID-19 vaccines confer protection from symptomatic disease, but the elicited antibody titer has been found to decrease with time. Furthermore, SARS-CoV-2 variants with relative resistance against antibody neutralization have been identified. To overcome such issues, a third vaccine dose applied as a booster vaccine may be necessary. We studied four healthy individuals who received a heterologous booster dose as a third vaccine. All of these individuals had heightened neutralizing antibody titer following the booster vaccination, and could neutralize nearly all variants tested. Thus, a heterologous third COVID-19 vaccine dose may be a mechanism to both heighten and broaden antibody titers, and could be an additional strategy for controlling the SARS-CoV-2 pandemic.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450397

RESUMO

Antibodies that potently neutralize SARS-CoV-2 target mainly the receptor-binding domain or the N-terminal domain (NTD). Over a dozen potently neutralizing NTD-directed antibodies have been studied structurally, and all target a single antigenic supersite in NTD (site 1). Here we report the 3.7 [A] resolution cryo-EM structure of a potent NTD-directed neutralizing antibody 5-7, which recognizes a site distinct from other potently neutralizing antibodies, inserting a binding loop into an exposed hydrophobic pocket between the two sheets of the NTD {beta}-sandwich. Interestingly, this pocket has been previously identified as the binding site for hydrophobic molecules including heme metabolites, but we observe their presence to not substantially impede 5-7 recognition. Mirroring its distinctive binding, antibody 5-7 retains a distinctive neutralization potency with variants of concern (VOC). Overall, we reveal a hydrophobic pocket in NTD proposed for immune evasion can actually be used by the immune system for recognition. HighlightsO_LICryo-EM structure of neutralizing antibody 5-7 in complex with SARS CoV-2 spike C_LIO_LI5-7 recognizes NTD outside of the previously identified antigenic supersite C_LIO_LI5-7 binds to a site known to accommodate numerous hydrophobic ligands C_LIO_LIStructural basis of 5-7 neutralization tolerance to some variants of concern C_LI

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439166

RESUMO

Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 {micro}g RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only [~]2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. Significance StatementThe emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436523

RESUMO

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine in nonhuman primates (NHPs). High-dose (50 {micro}g) SpFN vaccine, given twice within a 28 day interval, induced a Th1-biased CD4 T cell helper response and a peak neutralizing antibody geometric mean titer of 52,773 against wild-type virus, with activity against SARS-CoV-1 and minimal decrement against variants of concern. Vaccinated animals mounted an anamnestic response upon high-dose SARS-CoV-2 respiratory challenge that translated into rapid elimination of replicating virus in their upper and lower airways and lung parenchyma. SpFNs potent and broad immunogenicity profile and resulting efficacy in NHPs supports its utility as a candidate platform for SARS-like betacoronaviruses. One-Sentence SummaryA SARS-CoV-2 Spike protein ferritin nanoparticle vaccine, co-formulated with a liposomal adjuvant, elicits broad neutralizing antibody responses that exceed those observed for other major vaccines and rapidly protects against respiratory infection and disease in the upper and lower airways and lung tissue of nonhuman primates.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433466

RESUMO

The relative resistance of SARS-CoV-2 variants B.1.1.7 and B.1.351 to antibody neutralization has been described recently. We now report that another emergent variant from Brazil, P.1, is not only refractory to multiple neutralizing monoclonal antibodies, but also more resistant to neutralization by convalescent plasma (3.4 fold) and vaccinee sera (3.8-4.8 fold). The cryo-electron microscopy structure of a soluble prefusion-stabilized spike reveals the P.1 trimer to adopt exclusively a conformation in which one of the receptor-binding domains is in the "up" position, with the functional impact of mutations appearing to arise from local changes instead of global conformational alterations. The P.1 variant threatens current antibody therapies but less so the protective efficacy of our vaccines.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252259

RESUMO

Recent months have seen surges of SARS-CoV-2 infection across the globe with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature mutations of concern are E484K, which plays a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here, we report the emergence of variant lineage B.1.526 that contains E484K and its alarming rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies in clinical use and less susceptible to neutralization by convalescent plasma or vaccinee sera, posing a modest antigenic challenge. The B.1.526 lineage has now been reported from all 50 states in the US and numerous other countries. B.1.526 rapidly replaced earlier lineages in New York upon its emergence, with an estimated transmission advantage of 35%. Such transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, likely contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrent with the rise of B.1.1.7 and ensuing variants.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-424987

RESUMO

Understanding protective mechanisms of antibody recognition can inform vaccine and therapeutic strategies against SARS-CoV-2. We discovered a new antibody, 910-30, that targets the SARS-CoV-2 ACE2 receptor binding site as a member of a public antibody response encoded by IGHV3-53/IGHV3-66 genes. We performed sequence and structural analyses to explore how antibody features correlate with SARS-CoV-2 neutralization. Cryo-EM structures of 910-30 bound to the SARS-CoV-2 spike trimer revealed its binding interactions and ability to disassemble spike. Despite heavy chain sequence similarity, biophysical analyses of IGHV3-53/3-66 antibodies highlighted the importance of native heavy:light pairings for ACE2 binding competition and for SARS-CoV-2 neutralization. We defined paired heavy:light sequence signatures and determined antibody precursor prevalence to be ~1 in 44,000 human B cells, consistent with public antibody identification in several convalescent COVID-19 patients. These data reveal key structural and functional neutralization features in the IGHV3-53/3-66 public antibody class to accelerate antibody-based medical interventions against SARS-CoV-2. HighlightsO_LIA molecular study of IGHV3-53/3-66 public antibody responses reveals critical heavy and light chain features for potent neutralization C_LIO_LICryo-EM analyses detail the structure of a novel public antibody class member, antibody 910-30, in complex with SARS-CoV-2 spike trimer C_LIO_LICryo-EM data reveal that 910-30 can both bind assembled trimer and can disassemble the SARS-CoV-2 spike C_LIO_LISequence-structure-function signatures defined for IGHV3-53/3-66 class antibodies including both heavy and light chains C_LIO_LIIGHV3-53/3-66 class precursors have a prevalence of 1:44,000 B cells in healthy human antibody repertoires C_LI

14.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428137

RESUMO

The COVID-19 pandemic has ravaged the globe, and its causative agent, SARS-CoV-2, continues to rage. Prospects of ending this pandemic rest on the development of effective interventions. Single and combination monoclonal antibody (mAb) therapeutics have received emergency use authorization1-3, with more in the pipeline4-7. Furthermore, multiple vaccine constructs have shown promise8, including two with ~95% protective efficacy against COVID-199,10. However, these interventions were directed toward the initial SARS-CoV-2 that emerged in 2019. The recent emergence of new SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa12 is of concern because of their purported ease of transmission and extensive mutations in the spike protein. We now report that B.1.1.7 is refractory to neutralization by most mAbs to the N-terminal domain (NTD) of spike and relatively resistant to a few mAbs to the receptor-binding domain (RBD). It is not more resistant to convalescent plasma or vaccinee sera. Findings on B.1.351 are more worrisome in that this variant is not only refractory to neutralization by most NTD mAbs but also by multiple individual mAbs to the receptor-binding motif on RBD, largely due to an E484K mutation. Moreover, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4 fold) and vaccinee sera (10.3-12.4 fold). B.1.351 and emergent variants13,14 with similar spike mutations present new challenges for mAb therapy and threaten the protective efficacy of current vaccines.

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-426120

RESUMO

Numerous antibodies that neutralize SARS-CoV-2 have been identified, and these generally target either the receptor-binding domain (RBD) or the N-terminal domain (NTD) of the viral spike. While RBD-directed antibodies have been extensively studied, far less is known about NTD-directed antibodies. Here we report cryo-EM and crystal structures for seven potent NTD-directed neutralizing antibodies in complex with spike or isolated NTD. These structures defined several antibody classes, with at least one observed in multiple convalescent donors. The structures revealed all seven antibodies to target a common surface, bordered by glycans N17, N74, N122, and N149. This site - formed primarily by a mobile {beta}-hairpin and several flexible loops - was highly electropositive, located at the periphery of the spike, and the largest glycan-free surface of NTD facing away from the viral membrane. Thus, in contrast to neutralizing RBD-directed antibodies that recognize multiple non-overlapping epitopes, potent NTD-directed neutralizing antibodies target a single supersite.

16.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-425825

RESUMO

Ethnopharmacological relevanceArtemisia annua L. has been used for millennia in Southeast Asia to treat "fever". Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. Aim of the StudySARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. Materials and MethodsUsing Vero E6 and Calu-3 cells, we measured anti viral activity SARS-CoV-2 activity against fully infectious virusof dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as (the concentrations that inhibited viral replication by 50%.) and CC50s (the concentrations that kill 50% of cells) were calculated. ResultsHot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 M, 0.01-0.14 g, and 23.4-57.4 g, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet the hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 M, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 M. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. ConclusionsA. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections. List of compounds studiedAmodiaquine Artemisinin Artesunate Artemether Deoxyartemisinin Dihydroartemisinin HighlightsO_LIArtemisia annua is effective in stopping replication of SARS-CoV-2 including 2 new variants. C_LIO_LIThe anti-viral effect does not correlate to artemisinin, nor to the total flavonoid content. C_LIO_LIThe anti-viral mechanism does not appear to involve blockade virus entry into cell. C_LIO_LIThe plant offers two additional benefits: a decreased inflammatory response and blunting of fibrosis. C_LIO_LIA. annua may provide a safe, low-cost alternative for treating patients infected with SARS-CoV-2. C_LI

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-272864

RESUMO

We describe a mammalian cell-based assay capable of identifying coronavirus 3CL protease (3CLpro) inhibitors without requiring the use of live virus. By enabling the facile testing of compounds across a range of coronavirus 3CLpro enzymes, including the one from SARS-CoV-2, we are able to quickly identify compounds with broad or narrow spectra of activity. We further demonstrate the utility of our approach by performing a curated compound screen along with structure-activity profiling of a series of small molecules to identify compounds with antiviral activity. Throughout these studies, we observed concordance between data emerging from this assay and from live virus assays. By democratizing the testing of 3CL inhibitors to enable screening in the majority of laboratories rather than the few with extensive biosafety infrastructure, we hope to expedite the search for coronavirus 3CL protease inhibitors, to address the current epidemic and future ones that will inevitably arise.

18.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-235291

RESUMO

We report the identification of three structurally diverse compounds - compound 4, GC376, and MAC-5576 - as inhibitors of the SARS-CoV-2 3CL protease. Structures of each of these compounds in complex with the protease revealed strategies for further development, as well as general principles for designing SARS-CoV-2 3CL protease inhibitors. These compounds may therefore serve as leads for the basis of building effective SARS-CoV-2 3CL protease inhibitors.

19.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-153486

RESUMO

The SARS-CoV-2 pandemic rages on with devasting consequences on human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this novel coronavirus. Here we report the isolation of 61 SARS-CoV-2-neutralizing monoclonal antibodies from 5 infected patients hospitalized with severe disease. Among these are 19 antibodies that potently neutralized the authentic SARS-CoV-2 in vitro, 9 of which exhibited exquisite potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng/mL. Epitope mapping showed this collection of 19 antibodies to be about equally divided between those directed to the receptor-binding domain (RBD) and those to the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that are overlapping with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody targeting RBD, a second targeting NTD, and a third bridging two separate RBDs revealed recognition of the closed, "all RBD-down" conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.

20.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-150250

RESUMO

We studied plasma antibody responses of 35 patients about 1 month after SARS-CoV-2 infection. Titers of antibodies binding to the viral nucleocapsid and spike proteins were significantly higher in patients with severe disease. Likewise, mean antibody neutralization titers against SARS-CoV-2 pseudovirus and live virus were higher in the sicker patients, by ~5-fold and ~7-fold, respectively. These findings have important implications for those pursuing plasma therapy, isolation of neutralizing monoclonal antibodies, and determinants of immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA