Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1C.12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22135082

RESUMO

Antibodies are instrumental tools in stem cell identification, purification, and analysis. Most commonly, cell samples are either dissociated to obtain a single-cell suspension suitable for FACS analysis or cell sorting, or fixed in situ for immunostaining and fluorescence microscopy imaging. This unit describes an alternative method in which live adherent cells are stained and imaged in situ without the need for cell dissociation, fixation, or fluorescent reporter genes. This minimally invasive method is particularly useful for identification and distinction of fully and partially reprogrammed induced pluripotent stem cells (iPSCs). The unit also describes the use of mCD49e and hCD29 antibodies in live-cell (vital) imaging. mCD49e strongly stains mouse embryonic fibroblast (MEF) feeder cells in human pluripotent stem cell cultures, whereas hCD29 recognizes an antigen expressed on undifferentiated and many differentiated cells. A distinguishing feature of hCD29 in live-cell staining is that its antigen is precluded from detection wherever cells have formed tight epithelial junctions (e.g., in the center but not the periphery of pluripotent stem cell colonies) due to basolateral location. A non-fluorescent fixed-cell staining protocol is also provided for medium- to high-throughput quantification of stem cell experiments without an automated microscope. The discussion addresses technical limitations, pitfalls, troubleshooting, and potential applications, such as identification of emerging bona fide human iPSC colonies in reprogramming experiments.


Assuntos
Imunofluorescência/métodos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Coloração e Rotulagem/métodos , Anticorpos/metabolismo , Automação , Adesão Celular , Sobrevivência Celular , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência
2.
Nat Cell Biol ; 13(5): 541-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21499256

RESUMO

Human induced pluripotent stem (iPS) cells are remarkably similar to embryonic stem (ES) cells, but recent reports indicate that there may be important differences between them. We carried out a systematic comparison of human iPS cells generated from hepatocytes (representative of endoderm), skin fibroblasts (mesoderm) and melanocytes (ectoderm). All low-passage iPS cells analysed retain a transcriptional memory of the original cells. The persistent expression of somatic genes can be partially explained by incomplete promoter DNA methylation. This epigenetic mechanism underlies a robust form of memory that can be found in iPS cells generated by multiple laboratories using different methods, including RNA transfection. Incompletely silenced genes tend to be isolated from other genes that are repressed during reprogramming, indicating that recruitment of the silencing machinery may be inefficient at isolated genes. Knockdown of the incompletely reprogrammed gene C9orf64 (chromosome 9 open reading frame 64) reduces the efficiency of human iPS cell generation, indicating that somatic memory genes may be functionally relevant during reprogramming.


Assuntos
Metilação de DNA , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica , Diferenciação Celular , Epigênese Genética , Inativação Gênica , Humanos , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas
3.
Nature ; 471(7336): 63-7, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368825

RESUMO

Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutagênese/genética , Mutação Puntual/genética , Células Cultivadas , Análise Mutacional de DNA , Epistasia Genética/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Fases de Leitura Aberta/genética
4.
J Allergy Clin Immunol ; 127(6): 1400-7.e4, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21185069

RESUMO

BACKGROUND: The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells (iPSCs) through the exogenous expression of transcription promises to revolutionize the study of human diseases. OBJECTIVE: Here we report on the generation of 25 iPSC lines from 6 patients with various forms of primary immunodeficiencies (PIDs) affecting adaptive immunity, innate immunity, or both. METHODS: Patients' dermal fibroblasts were reprogrammed by expression of 4 transcription factors, octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2), Krueppel-like factor 4 (KLF4), and cellular myelomonocytosis proto-oncogene (cMYC), by using a single excisable polycistronic lentiviral vector. RESULTS: iPSCs derived from patients with PIDs show a stemness profile that is comparable with that observed in human embryonic stem cells. After in vitro differentiation into embryoid bodies, pluripotency of the patient-derived iPSC lines was demonstrated by expression of genes characteristic of each of the 3 embryonic layers. We have confirmed the patient-specific origin of the iPSC lines and ascertained maintenance of karyotypic integrity. CONCLUSION: By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of iPSC lines from patients with PIDs represents a unique resource to investigate the pathophysiology of hematopoietic and extrahematopoietic manifestations of these diseases and might assist in the development of novel therapeutic approaches based on gene correction.


Assuntos
Síndromes de Imunodeficiência/patologia , Síndromes de Imunodeficiência/fisiopatologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Imunidade Adaptativa , Desdiferenciação Celular , Diferenciação Celular , Linhagem Celular , Transdiferenciação Celular , DNA/genética , Expressão Gênica , Genes myc , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/genética , Cariotipagem , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fator 3 de Transcrição de Octâmero/genética , Proto-Oncogene Mas , Fatores de Transcrição SOXB1/genética
5.
Nat Genet ; 42(12): 1113-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21057500

RESUMO

The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome, resulting in altered patterns of gene expression. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs) that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA não Traduzido/metabolismo , Análise por Conglomerados , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Loci Gênicos/genética , Humanos , Fases de Leitura Aberta/genética , RNA não Traduzido/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Transcrição Gênica
6.
Cell Stem Cell ; 7(5): 618-30, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20888316

RESUMO

Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , RNA Mensageiro , Linhagem da Célula , Células Cultivadas , Humanos , RNA Mensageiro/farmacologia
8.
Nat Biotechnol ; 27(11): 1033-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19826408

RESUMO

Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by enforced expression of transcription factors. Using serial live imaging of human fibroblasts undergoing reprogramming, we identified distinct colony types that morphologically resemble embryonic stem (ES) cells yet differ in molecular phenotype and differentiation potential. By analyzing expression of pluripotency markers, methylation at the OCT4 and NANOG promoters and differentiation into teratomas, we determined that only one colony type represents true iPS cells, whereas the others represent reprogramming intermediates. Proviral silencing and expression of TRA-1-60, DNMT3B and REX1 can be used to distinguish the fully reprogrammed state, whereas alkaline phosphatase, SSEA-4, GDF3, hTERT and NANOG are insufficient as markers. We also show that reprogramming using chemically defined medium favors formation of fully reprogrammed over partially reprogrammed colonies. Our data define molecular markers of the fully reprogrammed state and highlight the need for rigorous characterization and standardization of putative iPS cells.


Assuntos
Reprogramação Celular/genética , Imageamento Tridimensional/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Linhagem Celular , Forma Celular , Sobrevivência Celular , Ensaio de Unidades Formadoras de Colônias , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Teratoma/patologia , Fatores de Tempo
9.
Zebrafish ; 6(3): 239-43, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19566407

RESUMO

Existing methods to quantify angiogenesis range from image analysis of photographs to fluorescent microscopy. These methods are often time consuming and costly; they also may not detect capillaries if they are indistinct from the background of the image. We have developed a simple method based on the motion of blood to create an image that reveals the entire angiogenic vasculature. Two image analysis software programs were used separately to demonstrate the method. Using either ImageJ or Environment for Visualizing Images, we analyzed a video clip of regenerated tissue from the partially amputated caudal fin of a zebrafish (Danio rerio). The deviations among the frames in the video stack were calculated to reveal pixels where motion has occurred. The resulting image highlighted all vessels through which blood flowed and allowed for automatic quantification of the newly developed vasculature. Using this method, we quantified the angiogenic action of basic fibroblast growth factor and vascular endothelial growth factor, as well as suppression of angiogenesis by an inhibitor. In a preliminary study, we also found that it could be used to trace the developing vasculature in zebrafish embryos. Thus, motion-based angiogenesis analysis may provide an easy and accurate quantification of angiogenesis.


Assuntos
Microscopia de Vídeo/métodos , Neovascularização Fisiológica , Peixe-Zebra/fisiologia , Inibidores da Angiogênese/farmacologia , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Microscopia de Vídeo/instrumentação , Neovascularização Fisiológica/efeitos dos fármacos , Software , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...