Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293218

RESUMO

Objective: Seventy percent of newly diagnosed breast cancers are estrogen receptor-α positive and HER2/neu negative [1]. First-line treatments incorporate endocrine therapy and cyclin-dependent kinase 4/6 inhibitors [2]. However, therapy resistance occurs in most patients [3-5]. Hence, there is an urgent need for effective second-line treatments. We previously showed that the potent estrogen receptor-ß agonists, OSU-ERb-12 and LY500307, synergized with the selective estrogen receptor modulator, tamoxifen, in vitro. Furthermore, we showed that these compounds inhibited endocrine-resistant and cyclin-dependent kinase 4/6-inhibitor-resistant estrogen receptor α-positive cell lines in vitro [6]. Here, we used fulvestrant- and abemaciclib-resistant T47D-derived cell line xenografts to determine the efficacy of the combination of OSU-ERb-12 and LY500307 with tamoxifen in vivo. Results: Despite efficacy in vitro, treatments failed to reduce xenograft tumor volumes. Hence, we conclude that this treatment strategy lacks direct cancer cell-intrinsic cytotoxic efficacy in vivo.

2.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745355

RESUMO

Background: Among women worldwide, breast cancer has the highest incidence and is the leading cause of cancer-related death. Patients with the triple-negative breast cancer (TNBC) subtype have an inferior prognosis in comparison to other breast cancers because current therapies do not facilitate long-lasting responses. Thus, there is a demand for more innovative therapies that induce durable responses.In our previous research, we discovered that augmenting the concentration of extracellular ATP (eATP) greatly enhances the chemotherapeutic response of TNBC cell lines by activating purinergic receptors (P2RXs), leading to cell death through the induction of non-selective membrane permeability. However, eATP levels are limited by several classes of extracellular ATPases. One endogenous molecule of interest that can inhibit multiple classes of extracellular ATPases is heparan sulfate. Polysulfated polysaccharide heparan sulfate itself is degraded by heparanase, an enzyme that is known to be highly expressed in various cancers, including breast cancer. Heparan sulfate has previously been shown to regulate several cancer-related processes such as fibroblast growth factor signaling, neoangiogenesis by sequestering vascular endothelial growth factors in the extracellular matrix, hedgehog signaling and cell adhesion. In this project, we identified an additional mechanism for a tumor suppressor role of heparan sulfate: inhibition of extracellular ATPases, leading to augmented levels of eATP.Several heparanase inhibitors have been previously identified, including OGT 2115, suramin, PI-88, and PG 545. We hypothesized that heparanase inhibitors would augment eATP concentrations in TNBC by increasing heparan sulfate in the tumor microenvironment, resulting in enhanced cell death in response to chemotherapy. Methods: We treated TNBC cell lines MDA-MB 231, Hs 578t, and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells with increasing concentrations of the chemotherapeutic agent paclitaxel in the presence of heparan sulfate and/or the heparanase inhibitor OGT 2115 while analyzing eATP release and cell viability. Moreover, to verify that the effects of OGT 2115 are mediated through eATP, we applied specific antagonists to the purinergic receptors P2RX4 and P2RX7. In addition, the protein expression of heparanase was compared in the cell lines by Western blot analysis. We also evaluated the consequences of this therapeutic strategy on the breast cancer-initiating cell population in the treated cells using flow cytometry and tumorsphere formation efficiency assays. Results: Heparanase was found to be highly expressed in immortal mammary epithelial cells in comparison to TNBC cell lines. The heparanase inhibitor OGT 2115 augmented chemotherapy-induced TNBC cell death and eATP release. Conclusion: These results demonstrate that inhibiting the degradation of heparan sulfate in the tumor microenvironment augments the susceptibility of TNBC cell lines to chemotherapy by increasing extracellular ATP concentrations. This strategy could potentially be applied to induce more enhanced and enduring responses in TNBC patients.

3.
bioRxiv ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37745565

RESUMO

Background: Breast cancer is the leading cause of cancer-related death among women worldwide. Patients diagnosed with triple-negative breast cancer (TNBC) have limited therapeutic options that produce durable responses. Hence, a diagnosis of TNBC is associated with a poor prognosis compared to other types of breast cancer. As a result, there is a critical need for novel therapies that can deepen and prolong responses.We previously found that chemotherapy causes the release of extracellular adenosine triphosphate (eATP). Augmenting eATP release can boost the response of TNBC cells to chemotherapy and cause increased cell death. However, eATP concentrations are limited by several families of extracellular ATPases, which complicates the design of compounds that attenuate eATP degradation.In this study, we hypothesized that heparan sulfate (HS) would inhibit extracellular ATPases and accentuate chemotherapy-induced cytotoxicity in TNBC by augmenting eATP. HS can be desulfated by sulfatase 1 and 2; sulfatase 2 is consistently highly expressed in a variety of cancers including breast cancer, whereas sulfatase 1 is not. We hypothesized that the sulfatase 2 inhibitor OKN-007 would exacerbate chemotherapy-induced eATP release and TNBC cell death. Methods: TNBC cell lines and nontumorigenic immortal mammary epithelial cells were treated with paclitaxel in the presence of heparan sodium sulfate and/or OKN-007; eATP content and cell viability were evaluated. In addition, protein and cell surface expression of sulfatases 1 and 2 were determined in all examined cell lines via ELISA, Western blot, and flow cytometry analyses. Results: Sulfatase 2 was highly expressed in TNBC cell lines and human breast cancer samples but not in immortal mammary epithelial cells and much less so in normal human breast tissue and ductal carcinoma in situ samples. OKN-007 exacerbated chemotherapy-induced eATP release and chemotherapy-induced TNBC cell death. When combined with chemotherapy, OKN-007 attenuated cells with a cancer-initiating cell phenotype. Conclusions: These results suggest that sulfatase 2 inhibitors in combination with chemotherapy attenuate the viability of TNBC cells more than chemotherapy alone by exacerbating eATP release. These effects, as well as their capacity to attenuate the cancer-initiating cell fraction, may translate into combination therapies for TNBC that induce deeper and more durable responses.

4.
Front Oncol ; 12: 857590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574319

RESUMO

Background: Among women, breast cancer is the leading cause of cancer-related death worldwide. Estrogen receptor α-positive (ERα+) breast cancer accounts for 70% of all breast cancer subtypes. Although ERα+ breast cancer initially responds to estrogen deprivation or blockade, the emergence of resistance compels the use of more aggressive therapies. While ERα is a driver in ERα+ breast cancer, ERß plays an inhibitory role in several different cancer types. To date, the lack of highly selective ERß agonists without ERα activity has limited the exploration of ERß activation as a strategy for ERα+ breast cancer. Methods: We measured the expression levels of ESR1 and ESR2 genes in immortalized mammary epithelial cells and different breast cancer cell lines. The viability of ERα+ breast cancer cell lines upon treatments with specific ERß agonists, including OSU-ERb-12 and LY500307, was assessed. The specificity of the ERß agonists, OSU-ERb-12 and LY500307, was confirmed by reporter assays. The effects of ERß agonists on cell proliferation, cell cycle, apoptosis, colony formation, cell migration, and expression of tumor suppressor proteins were analyzed. The expression of ESR2 and genes containing ERE-AP1 composite response elements was examined in ERα+ human breast cancer samples to determine the correlation between ESR2 expression and overall survival and that of putative ESR2-regulated genes. Results: In this study, we demonstrate the efficacy of highly selective ERß agonists in ERα+ breast cancer cell lines and drug-resistant derivatives. ERß agonists blocked cell proliferation, migration, and colony formation and induced apoptosis and S and/or G2/M cell-cycle arrest of ERα+ breast cancer cell lines. Also, increases in the expression of the key tumor suppressors FOXO1 and FOXO3a were noted. Importantly, the strong synergy between ERß agonists and ERα antagonists suggested that the efficacy of ERß agonists is maximized by combination with ERα blockade. Lastly, ESR2 (ERß gene) expression was negatively correlated with ESR1 (ERα gene) and CCND1 RNA expression in human metastatic ERα+/HER2- breast cancer samples. Conclusion: Our results demonstrate that highly selective ERß agonists attenuate the viability of ERα+ breast cancer cell lines in vitro and suggest that this therapeutic strategy merits further evaluation for ERα+ breast cancer.

5.
Front Oncol ; 12: 855032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35515134

RESUMO

Introduction: Breast cancer affects two million patients worldwide every year and is the most common cause of cancer-related death among women. The triple-negative breast cancer (TNBC) sub-type is associated with an especially poor prognosis because currently available therapies fail to induce long-lasting responses. Therefore, there is an urgent need to develop novel therapies that result in durable responses. One universal characteristic of the tumor microenvironment is a markedly elevated concentration of extracellular adenosine triphosphate (eATP). Chemotherapy exposure results in further increases in eATP through its release into the extracellular space of cancer cells via P2RX channels. eATP is degraded by eATPases. Given that eATP is toxic to cancer cells, we hypothesized that augmenting the release of eATP through P2RX channels and inhibiting extracellular ATPases would sensitize TNBC cells to chemotherapy. Methods: TNBC cell lines MDA-MB 231, Hs 578t and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells were treated with increasing concentrations the chemotherapeutic agent paclitaxel in the presence of eATPases or specific antagonists of P2RXs with cell viability and eATP content being measured. Additionally, the mRNA, protein and cell surface expressions of the purinergic receptors P2RX4 and P2RX7 were evaluated in all examined cell lines via qRT-PCR, western blot, and flow cytometry analyses, respectively. Results: In the present study, we observed dose-dependent declines of cell viability and increases in eATP of paclitaxel-treated TNBC cell lines in the presence of inhibitors of eATPases, but not of the MCF-10A cell line. These effects were reversed by specific antagonists of P2RXs. Similar results, as those observed with eATPase inhibitors, were seen with P2RX activators. All examined cell lines expressed both P2RX4 and P2RX7 at the mRNA, protein and cell surface levels. Conclusion: These results reveal that eATP modulates the chemotherapeutic response in TNBC cell lines, which could be exploited to enhance the efficacy of chemotherapy regimens for TNBC.

6.
Anticancer Res ; 38(12): 6789-6795, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30504391

RESUMO

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) can be characterized as the deadliest breast cancer type considering the lack of efficacious therapeutics. Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) is an encouraging anti-cancer therapeutic with the capacity to induce apoptosis in cancer cells but there are TNBCs less susceptible to rhTRAIL. The aim of this study was to assess the potential of the natural product ursolic acid (UA) to sensitize of rhTRAIL-resistant TNBCs. MATERIALS AND METHODS: In order to evaluate apoptosis induction in rhTRAIL and UA-treated TNBC BT-20 and HCC1937 cells that are resistant to rhTRAIL, western blot analysis and Annexin V/PI assays were executed. RESULTS: UA increased the expression of death receptors 4 and 5 and decreased the expression of c-FLIPL transcriptionally sensitizing rhTRAIL-resistant TNBC cells to apoptosis induced by rhTRAIL. CONCLUSION: UA is a possible potent sensitizer of rhTRAIL-resistant TNBCs to rhTRAIL-induced apoptosis.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Triterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Feminino , Humanos , Proteínas Recombinantes/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Triterpenos/administração & dosagem , Ácido Ursólico
7.
Melanoma Res ; 28(4): 277-285, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29596115

RESUMO

Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.


Assuntos
Antioxidantes/uso terapêutico , Melanoma/tratamento farmacológico , Quercetina/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antioxidantes/farmacologia , Apoptose , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Melanoma/patologia , Quercetina/farmacologia , Neoplasias Cutâneas/patologia
8.
Breast Cancer (Auckl) ; 12: 1178223417749855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434473

RESUMO

Breast cancer is the most commonly diagnosed cancer in women. There is a continued interest for the development of more efficacious treatment regimens for breast carcinoma. Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) shows potential as a potent anticancer therapeutic for the treatment of breast cancer, whereas displaying minimal toxicity to normal cells. However, the promise of rhTRAIL for the treatment of breast cancer is dismissed by the resistance to rhTRAIL-induced apoptosis exhibited by many breast cancers. Thus, a cotreatment strategy was examined by applying the natural compound quercetin (Q) as a sensitizing agent for rhTRAIL-resistant breast cancer BT-20 and MCF-7 cells. Quercetin was able to sensitize rhTRAIL-resistant breast cancers to rhTRAIL-induced apoptosis as detected by Western blotting through the proteasome-mediated degradation of c-FLIPL and through the upregulation of DR5 expression transcriptionally. Overall, these in vitro findings establish that Q is an effective sensitizing agent for rhTRAIL-resistant breast cancers.

9.
Anticancer Res ; 37(12): 6593-6599, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29187434

RESUMO

BACKGROUND/AIM: Triple-negative breast cancer (TNBC) is the most fatal form of breast cancer due to the shortcomings of therapies. However, recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) is a promising anticancer therapeutic that possesses the capability to promote the induction of apoptosis in cancer cells, but some TNBCs are resistant to rhTRAIL's pro-apoptotic effects. Therefore, a combinatorial treatment approach with silibinin and rhTRAIL was considered in order to sensitize rhTRAIL-resistant TNBCs. MATERIALS AND METHODS: The co-treatment of rhTRAIL and silibinin's impact on apoptosis induction in rhTRAIL-resistant TNBC BT-20 and HCC1937 cells was inspected via application of Annexin V/PI assays and western blot analysis. RESULTS: Silibinin possessed the ability to sensitize the examined rhTRAIL-resistant TNBC cells to rhTRAIL-induced apoptosis through the up-regulation of death receptors 4 and 5 and the down-regulation of survivin transcriptionally. CONCLUSION: Silibinin is a good sensitizing agent for rhTRAIL-resistant TNBCs.


Assuntos
Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Silimarina/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/genética , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Silibina , Survivina , Ligante Indutor de Apoptose Relacionado a TNF/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...