Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2885, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570485

RESUMO

Conflicting results remain on the impacts of climate change on marine organisms, hindering our capacity to predict the future state of marine ecosystems. To account for species-specific responses and for the ambiguous relation of most metrics to fitness, we develop a meta-analytical approach based on the deviation of responses from reference values (absolute change) to complement meta-analyses of directional (relative) changes in responses. Using this approach, we evaluate responses of fish and invertebrates to warming and acidification. We find that climate drivers induce directional changes in calcification, survival, and metabolism, and significant deviations in twice as many biological responses, including physiology, reproduction, behavior, and development. Widespread deviations of responses are detected even under moderate intensity levels of warming and acidification, while directional changes are mostly limited to more severe intensity levels. Because such deviations may result in ecological shifts impacting ecosystem structures and processes, our results suggest that climate change will likely have stronger impacts than those previously predicted based on directional changes alone.


Assuntos
Ecossistema , Água do Mar , Animais , Água do Mar/química , Invertebrados/fisiologia , Mudança Climática , Organismos Aquáticos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Aquecimento Global
3.
Mar Pollut Bull ; 193: 115190, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336043

RESUMO

Artificial Light at Night (ALAN) alters cycles of day and night, potentially modifying species' behavior. We assessed whether exposure to ALAN influences decision-making (directional swimming) in an intertidal rockfish (Girella laevisifrons) from the Southeastern Pacific. Using a Y-maze, we examined if exposure to ALAN or natural day/night conditions for one week affected the number of visits and time spent in three Y-maze compartments: dark and lit arms ("safe" and "risky" conditions, respectively) and a neutral "non-decision" area. The results showed that fish maintained in natural day/night conditions visited and spent more time in the dark arm, regardless of size. Instead, fish exposed to ALAN visited and spent more time in the non-decision area and their response was size-dependent. Hence, prior ALAN exposure seemed to disorient or reduce the ability of rock fish to choose dark conditions, deemed the safest for small fish facing predators or other potential threats.


Assuntos
Bass , Poluição Luminosa , Animais , Fotoperíodo , Comportamento Animal/fisiologia , Natação , Luz
4.
Sci Total Environ ; 872: 162086, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36764536

RESUMO

Artificial light at night (ALAN) is a pervasive but still under-recognized driver of global change. In coastal settings, a large majority of the studies assessing ALAN impacts has focused on individual species, even though it is unclear whether results gathered from single species can be used to predict community-wide responses. Similarly, these studies often treat species as single life-stage entities, ignoring the variation associated with distinct life stages. This study addresses both limitations by focusing on the effects of ALAN on a sandy beach community consisting of species with distinct early- and late-life stages. Our hypothesis was that ALAN alters community structure and these changes are mediated by individual species and also by their ontogenetic stages. A field experiment was conducted in a sandy beach of north-central Chile using an artificial LED system. Samples were collected at different night hours (8-levels in total) across the intertidal (9-levels) over several days in November and January (austral spring and summer seasons). The abundance of adults of all species was significantly lower in ALAN treatments. Early stages of isopods showed the same pattern, but the opposite was observed for the early stages of the other two species. Clear differences were detected in the zonation of these species during natural darkness versus those exposed to ALAN, with some adult-juvenile differences in this response. These results support our hypothesis and document a series of changes affecting differentially both early and late life stages of these species, and ultimately, the structure of the entire community. Although the effects described correspond to short-term responses, more persistent effects are likely to occur if ALAN sources become established as permanent features in sandy beaches. The worldwide growth of ALAN suggests that the scope of its effect will continue to grow and represents a concern for sandy beach systems.


Assuntos
Ecossistema , Poluição Luminosa , Chile , Estações do Ano , Luz
5.
Mar Pollut Bull ; 187: 114554, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621303

RESUMO

We investigated the combined effects of Ocean Warming (OW), Acidification (OA) and predator cues (Non-Consumptive Effects; NCEs) of two predators with contrasting feeding-digestion strategies on the mussel Perumytilus purpuratus. We considered starfish-NCEs (partially external digestion) and snail-NCEs (internal digestion). Mussels were exposed for 13 weeks to cross-factored OA (~500 and ~1400 µatm, pCO2) and OW (~15 and ~20 °C) conditions, in the presence/absence of NCEs from one or both predators. Mussels exposed to both NCEs exhibited smaller length and buoyant weight growth than those under control or snail-NCEs conditions. Mussels exposed to starfish-NCEs exhibited smaller wet mass than control mussels. OW and starfish-NCEs in isolation or combined with snail-NCEs increased mussel oxygen consumption. Byssal biogenesis was affected by the three-factors interaction. Clearance rates were affected by the OW × OA interaction. We suggest that mainly starfish-NCEs, in isolation or interacting with OA or/and OW, can threat mussel traits and the associated community.


Assuntos
Bivalves , Mudança Climática , Animais , Cadeia Alimentar , Alimentos Marinhos , Digestão , Concentração de Íons de Hidrogênio , Água do Mar
6.
Sci Total Environ ; 856(Pt 2): 159284, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209875

RESUMO

To predict the potential impacts of climate change on marine organisms, it is critical to understand how multiple stressors constrain the physiology and distribution of species. We evaluated the effects of seasonal changes in seawater temperature and near-future ocean acidification (OA) on organismal and sub-organismal traits associated with the thermal performance of Eleginops maclovinus, a sub-Antarctic notothenioid species with economic importance to sport and artisanal fisheries in southern South America. Juveniles were exposed to mean winter and summer sea surface temperatures (4 and 10 °C) at present-day and near-future pCO2 levels (~500 and 1800 µatm). After a month, the Critical Thermal maximum and minimum (CTmax, CTmin) of fish were measured using the Critical Thermal Methodology and the aerobic scope of fish was measured based on the difference between their maximal and standard rates determined from intermittent flow respirometry. Lipid peroxidation and the antioxidant capacity were also quantified to estimate the oxidative damage potentially caused to gill and liver tissue. Although CTmax and CTmin were higher in individuals acclimated to summer versus winter temperatures, the increase in CTmax was minimal in juveniles exposed to the near-future compared to present-day pCO2 levels (there was a significant interaction between temperature and pCO2 on CTmax). The reduction in the thermal tolerance range under summer temperatures and near-future OA conditions was associated with a reduction in the aerobic scope observed at the elevated pCO2 level. Moreover, an oxidative stress condition was detected in the gill and liver tissues. Thus, chronic exposure to OA and the current summer temperatures pose limits to the thermal performance of juvenile E. maclovinus at the organismal and sub-organismal levels, making this species vulnerable to projected climate-driven warming.


Assuntos
Peixes , Água do Mar , Animais , Temperatura , Concentração de Íons de Hidrogênio , Estações do Ano , Oceanos e Mares
7.
Environ Pollut ; 302: 118918, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35227850

RESUMO

To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.


Assuntos
Gastrópodes , Comportamento Predatório , Animais , Sinais (Psicologia) , Gastrópodes/fisiologia , Concentração de Íons de Hidrogênio , Oceanos e Mares , Comportamento Predatório/fisiologia , Água do Mar
8.
Environ Sci Pollut Res Int ; 29(24): 35977-35985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060027

RESUMO

Artificial Light at Night (ALAN) is expanding worldwide, and the study of its influence remains limited mainly to documenting impacts, overlooking the variation in key characteristics of the artificial light such as its intensity. The potential dose-response of fitness-related traits to different light intensities has not been assessed in sandy beach organisms. Hence, this study explored dose-responses to ALAN by exposing the intertidal sandy beach isopod Tylos spinulosus to a range of light intensities at night: 0 (control), 20, 40, 60, 80 and 100 lx. We quantified the response of this species at the molecular (RNA:DNA ratios), physiological (absorption efficiency) and organismal (growth rate) levels. Linear and non-linear regressions were used to explore the relationship between light intensity and the isopod response. The regressions showed that increasing light intensity caused an overall ~ threefold decline in RNA:DNA ratios and a ~ threefold increase in absorption efficiency, with strong dose-dependent effects. For both response variables, non-linear regressions also identified likely thresholds at 80 lx (RNA:DNA) and 40 lx (absorption efficiency). By contrast, isopod growth rates were unrelated (unaltered) by the increase in light intensity at night. We suggest that ALAN is detrimental for the condition of the isopods, likely by reducing the activity and feeding of these nocturnal organisms, and that the isopods compensate this by absorbing nutrients more efficiently in order to maintain growth levels.


Assuntos
Isópodes , Poluição Luminosa , Animais , Causalidade , DNA , Isópodes/efeitos da radiação , RNA
9.
Chemosphere ; 288(Pt 1): 132410, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600016

RESUMO

Widespread intertidal mussels are exposed to a variety of natural and anthropogenic stressors. Even so, our understanding of the combined influence of stressors such as predation risk and ocean acidification (OA) on these species remains limited. This study examined the response of the purple mussel (Perumytilus purpuratus), a species distributed along Pacific southeastern rocky shores, to the effects of predation risk and OA. Using a laboratory 2 × 2 cross design, purple mussels were either devoid or exposed to predator cues from the muricid snail Acanthina monodon, while simultaneously exposing them to current (500 ppm) or projected OA conditions (1500 ppm). The response of purple mussels to these factors was assessed using growth, calcification, clearance, and metabolic rates, in addition to byssus production. After 60 d, the presence of predator cues reduced mussel growth in width and length, and in the latter case, OA enhanced this response making the effects of predator cues more severe. Calcification rates were driven by the interaction between the two stressors, whereas clearance rates increased only in response to OA, likely explaining some of the growth results. Mussel byssus production also increased with pCO2 but interacted with predation risk: in the absence of predator cues, byssus production increased with OA. These results suggest that projected levels of OA may alter and in some cases prevail over the natural response of purple mussels to predation risk. Considering the role played by this mussel as a dominant competitor and ecosystem engineer in rocky shores, these results have community-wide implications.


Assuntos
Bivalves , Ecossistema , Animais , Efeitos Antropogênicos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Comportamento Predatório , Água do Mar , Caramujos
10.
Environ Pollut ; 293: 118481, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34763014

RESUMO

Ocean acidification (OA) is expected to rise towards the end of the 21st century altering the life history traits in marine organisms. Upwelling systems will not escape OA, but unlike other areas of the ocean, cooling effects are expected to intensify in these systems. Regardless, studies evaluating the combined effects of OA and cooling remain scarce. We addressed this gap using a mesocosm system, where we exposed juveniles of the intertidal muricid snail Acanthina monodon to current and projected pCO2 (500 vs. 1500 ppm) and temperature (15 vs. 10 °C) from the southeast Pacific upwelling system. After 9 weeks of experimental exposure to those conditions, we conducted three estimations of growth (wet weight, shell length and shell peristomal length), in addition to measuring calcification, metabolic and feeding rates and the ability of these organisms to return to the normal upright position after being overturned (self-righting). Growth, feeding and calcification rates increased in projected cooling conditions (10 °C) but were unaffected by pCO2 or the interaction between pCO2 and temperature. Instead, metabolic rates were driven by pCO2, but a significant interaction with temperature suggests that in cooler conditions, metabolic rates will increase when associated with high pCO2 levels. Snail self-righting times were not affected across treatments. These results suggest that colder temperatures projected for this area would drive this species growth, feeding and calcification, and consequently, some of its population biology and productivity. However, the snails may need to compensate for the increase in metabolic rates under the effects of ocean acidification. Although A. monodon ability to adjust to individual or combined stressors will likely account for some of the changes described here, our results point to a complex dynamic to take place in intertidal habitats associated with upwelling systems.


Assuntos
Ecossistema , Água do Mar , Animais , Organismos Aquáticos , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Caramujos , Água
11.
Mar Pollut Bull ; 168: 112416, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33957496

RESUMO

Many coastal processes are regulated by day/night cycles and are expected to be altered by Artificial Light at Night (ALAN). The goal of this study was to assess the influence of ALAN on the settlement rates of intertidal barnacles. A newly designed settlement plate equipped with a small central LED light source was used to quantify settlement rates in presence/absence of ALAN conditions. "ALAN plates" as well as regular settlement plates were deployed in the mid rocky intertidal zone. Both ALAN and control plates collected early and late settlers of the barnacles Notochthamalus scabrosus and Jehlius cirratus. Early settlers (pre-metamorphosis cyprids) were not affected by ALAN. By contrast, the density of late settlers (post-metamorphosis spats) was significantly lower in ALAN than in control plates for both species, suggesting detrimental ALAN impacts on the settlement process. The new ALAN plates represent an attractive and alternative methodology to study ALAN effects.


Assuntos
Thoracica , Animais , Ecossistema , Luz , Metamorfose Biológica
12.
Environ Pollut ; 286: 117224, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33975220

RESUMO

Understanding the impact of increases in pCO2 (OA) and extreme changes in temperature on marine organisms is critical to predicting how they will cope with climate change. We evaluated the effects of OA as well as warming and cooling trend temperature on early reproductive traits of Lessonia trabeculata, a bio-engineer kelp species. Sori discs were maintained for an exposure time (ET) of 3 (T3) and 7 (T7) days to one of two contrasting pCO2 levels (450 and 1100 µatm). In addition, at each pCO2 level, they were subjected to three temperature treatments: 15 °C (control), 10 °C (cool) and 19 °C (warm). Subsequently, we compared sorus photosynthetic performance (Fv/Fm), the number of meiospores released (MR) and their germination rate (GR) after 48 h of settlement, with values obtained from sori discs not exposed (DNE) to the treatments. The Fv/Fm measured for DNE was lower than at T3 and T7 at 10 and 15 °C but not at 19 °C. Regardless of temperature, we found no significant differences between MR measured at T0 and T3. MR at T7 was significantly lower at 19 °C than at 10 and 15 °C. We found only a significant reduction in MR in response to elevated pCO2 at T3. The GR of meiospores released by DNE and then maintained for 48 h to 19 °C decreased significantly by ~33% when compared with those maintained for the same time at 10 and 15 °C. A similar, but more drastic reduction (~54%) in the GR was found in meiospores released by sori discs exposed for T3 and maintained for 48 h to 19 °C. We suggest that OA and warming trend will threaten the early establishment of this species with further consequences for the functioning of the associated ecosystem.


Assuntos
Kelp , Dióxido de Carbono , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
13.
Environ Pollut ; 280: 116895, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784562

RESUMO

The growth of Artificial Light At Night (ALAN) is potentially having widespread effects on terrestrial and coastal habitats. In this study we addressed both the individual effects of ALAN, as well as its combined effect with predation risk on the behaviour of Concholepas concholepas, a fishery resource and a keystone species in the southeastern Pacific coast. We measured the influence of ALAN and predation risk on this mollusc's feeding rate, use of refuge for light and crawling out of water behaviour. These behavioural responses were studied using light intensities that mimicked levels that had been recorded in coastal habitat exposed to ALAN. Cues were from two species known to prey on C. concholepas during its early ontogeny: the crab Acanthocyclus hassleri and the seastar Heliaster helianthus. The feeding rates of C. concholepas were 3-4 times higher in darkness and in the absence of predator cues. In contrast, ALAN-exposed C. concholepas showed lower feeding activity and were more likely to be in a refuge than those exposed to control conditions. In the presence of olfactory predator cues, and regardless of light treatment, C. concholepas tended to crawl-out of the waterline. We provide evidence to support the hypothesis that exposure to either ALAN or predation risk can alter the feeding behaviour of C. concholepas. However, predator cue recognition in C. concholepas was not affected by ALAN in situations where ALAN and predator cues were both present: C. concholepas continued to forage when predation risk was low, i.e., in darkness and away from predator cues. Whilst this response means that ALAN may not lead to increased predation mortality in C. concholepas, it will reduce feeding activity in this naturally nocturnal species in the absence of dark refugia. Such results may have implications for the long-term health, productivity and sustainability of this keystone species.


Assuntos
Braquiúros , Gastrópodes , Animais , Sinais (Psicologia) , Ecossistema , Comportamento Predatório
14.
Sci Total Environ ; 780: 146568, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33774285

RESUMO

Artificial light at night (ALAN) is a growing source of stress for organisms and communities worldwide. These include species associated with sandy beaches, which consume and process stranded seaweeds (wrack) in these ecosystems. This study assessed the influence of ALAN on the activity and feeding behaviour of Americorchestia longicornis, a prominent talitrid amphipod living in sandy beaches of Prince Edward Island, Atlantic Canada. First, two parallel field surveys were conducted to document the natural daily cycle of activity of this species. Then, three related hypotheses were used to assess whether ALAN disrupts its locomotor activity, whether that disruption lasts over time, and whether it affects the feeding behaviour and growth of the amphipods. Tanks equipped with actographs recorded amphipod locomotor activity for ~7 days and then its potential recovery (after ALAN removal) for additional ~3 days. Separate tanks were used to compare amphipod food consumptions rates, absorption efficiency and growth rates under natural daylight / night (control) and altered conditions (ALAN). The results of these manipulations provide support to two of the three hypotheses proposed and indicate that ALAN was temporarily detrimental for (i.e. significantly reduced) the surface activity, consumption rates and absorption efficiency of the amphipods, whereas growth rates remained unaffected. The results also rejected the remaining hypothesis and suggest that the plasticity exhibited by these amphipods confer them the capacity to recover their natural rhythm of activity shortly after ALAN was removed from the system. Combined, these results suggest that ALAN has a strong, albeit temporary, influence upon the abundant populations of A. longicornis. Such influence has implications for the ecosystem role played by these amphipods as consumers and processors of the subsidy of stranded seaweeds entering these ecosystems.


Assuntos
Anfípodes , Animais , Canadá , Ecossistema , Poluição Ambiental , Comportamento Alimentar , Luz
15.
Sci Total Environ ; 776: 145916, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639464

RESUMO

In order to make adequate projections on the consequences of climate change stressors on marine organisms, it is important to know how impacts of these stressors are affected by the presence of other species. Here we assessed the direct effects of ocean warming (OW) and acidification (OA) along with non-consumptive effects (NCEs) of a predatory crab and/or a predatory snail on the habitat-forming mussel Perumytilus purpuratus. Mussels were exposed for 10-14 weeks to contrasting pCO2 (500 and 1400 µatm) and temperature (15 and 20 °C) levels, in the presence/absence of cues from one or two predator species. We compared mussel traits at sub-organismal (nutritional status, metabolic capacity-ATP production-, cell stress condition via HSP70 expression) and organismal (survival, oxygen consumption, growth, byssus biogenesis, clearance rates, aggregation) levels. OA increased the mussels' oxygen consumption; and OA combined with OW increased ATP demand and the use of carbohydrate reserves. Mussels at present-day pCO2 levels had the highest protein content. Under OW the predatory snail cues induced the highest cell stress condition on the mussels. Temperature, predator cues and the interaction between them affected mussel growth. Mussels grew larger at the control temperature (15 °C) when crab and snail cues were present. Mussel wet mass and calcification were affected by predator cues; with highest values recorded in crab cue presence (isolated or combined with snail cues). In the absence of predator cues in the trails, byssus biogenesis was affected by OA, OW and the OA × OW and OA × predator cues interactions. At present-day pCO2 levels, more byssus was recorded with snail than with crab cues. Clearance rates were affected by temperature, pCO2 and the interaction between them. The investigated stressors had no effects on mussel aggregation. We conclude that OA, OW and the NCEs may lead to neutral, positive or negative consequences for mussels.


Assuntos
Bivalves , Mudança Climática , Animais , Dióxido de Carbono , Sinais (Psicologia) , Concentração de Íons de Hidrogênio , Comportamento Predatório , Água do Mar
16.
Mar Pollut Bull ; 163: 111928, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33418341

RESUMO

Human growth has caused an unprecedented increase in artificial light at night (ALAN). In coastal habitats, many species rely on day/night cycles to regulate various aspects of their life history and these cycles can be altered by this stressor. This study assessed the influence of ALAN on the early (cyprid) and late (spat) settlement stages of the acorn barnacle Semibalanus balanoides, a species widely distributed in natural and man-made coastal habitats of the North Atlantic. A newly designed settlement plate, originally for studies in rocky intertidal habitats in the southeast Pacific, was adapted to measure settlement rates on man-made habitats -wharf seawalls- located in Atlantic Canada. Plates equipped with a small LED diode powered by an internal battery (ALAN plates) were used to quantify settlement rates in comparison to plates lacking a light source (controls). These plates were deployed for 6 d in the mid-intertidal levels, where adult barnacles were readily visible. ALAN and control plates collected large number of settlers and showed to be suitable for this type of man-made habitats. The number of early settlers (cyprids) did not differ between plates but the number of late settlers (spat) was significantly lower in ALAN plates than in controls. These results suggest that light pollution has little influence on the early stages of the acorn barnacle settlement but is clearly detrimental to its late stages. As barnacles dominate in many natural and man-made hard substrates, it is likely that ALAN also has indirect effects on community structure.


Assuntos
Thoracica , Animais , Canadá , Ecossistema , Poluição Ambiental , Humanos , Luz , Alimentos Marinhos
17.
Sci Total Environ ; 758: 143587, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218819

RESUMO

In mid rocky intertidal habitats the mussel Perumytilus purpurarus monopolizes the substratum to the detriment of many other species. However, the consumption of mussels by the shell-crushing crab Acanthocyclus hassleri creates within the mussel beds space and habitat for several other species. This crab uses its disproportionately large claw to crush its shelled prey and plays an important role in maintaining species biodiversity. This study evaluated the consequences of projected near-future ocean acidification (OA) and warming (OW) on traits of A. hassleri linked with their predatory performance. Individual A. hassleri were maintained for 10-16 weeks under contrasting pCO2 (~500 and 1400 µatm) and temperature (~15 and 20 °C) levels. We compared traits at the organismal (oxygen consumption rate, survival, calcification rate, feeding rates, crusher claw pinching strength, self-righting speed, sarcomere length of the crusher claw muscles) and cellular (nutritional status ATP provisioning capacity through citrate synthase activity, expression of HSP70) level. Survival, calcification rate and sarcomere length were not affected by OA and OW. However, OW increased significantly feeding and oxygen consumption. Pinching strength was reduced by OA; meanwhile self-righting was increased by OA and OW. At 20 °C, carbohydrate content was reduced significantly by OA. Regardless of temperature, a significant reduction in energy reserves in terms of protein content by OA was found. The ATP provisioning capacity was significantly affected by the interaction between temperature and pCO2 and was highest at 15 °C and present day pCO2 levels. The HSP70 levels of crabs exposed to OW were higher than in the control crabs. We conclude that OA and OW might affect the amount and size of prey consumed by this crab. Therefore, by reducing the crab feeding performance these stressors might pose limits on their role in generating microhabitat for other rocky intertidal species inhabiting within mussel beds.


Assuntos
Braquiúros , Animais , Dióxido de Carbono , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar
18.
Sci Total Environ ; 719: 137239, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126405

RESUMO

We evaluated the effects of projected, near future ocean acidification (OA) and extreme events of temperature (warming or cooling) on the thermal tolerance of Concholepas concholepas, a coastal benthic keystone species. Three separate trials of an experiment were conducted by exposing juvenile C. concholepas for 1 month to one of two contrasting pCO2 levels (~500 and ~1200 µatm). In addition, each pCO2 level was combined with one of four temperature treatments. The control was 15 °C, whilst the other temperatures were 10 °C (Trial 1), 20 °C (Trial 2) and 25 °C (Trial 3). At the end of each trial, we assessed Critical Thermal maximum (CTmax) and minimum (CTmin) via self-righting success, calculated partial thermal tolerance polygons, measured somatic growth, determined transcription of Heat Shock Proteins 70 (HSP70) and measured oxygen consumption rates. Regardless of pCO2 level, HSP70 transcript levels were significantly higher in juveniles after exposure to extreme temperatures (10 °C and 25 °C) indicating physiological stress. Oxygen consumption rates increased with increasing temperature from 10 °C to 20 °C though showed a decrease at 25 °C. This rate was not affected by pCO2 or the interaction between temperature and pCO2. Juveniles exposed to present-day and near future pCO2 levels at 20 °C showed similar thermal tolerance polygonal areas; whilst changes in both CTmin and CTmax at 25 °C and 10 °C caused narrower and broader areas, respectively. Temperature affected growth, oxygen consumption and HSP70 transcription in small juvenile C. concholepas. Exposure to elevated pCO2 did not affect thermal tolerance, growth or oxygen consumption at temperatures within the thermal range normally experienced by this species in northern Chile (15-20 °C). At elevated pCO2 conditions, however, exposure to warmer (25 °C) or colder (10 °C) temperatures reduced or increased the thermal area, respectively. This study demonstrates the importance of examining the thermal-tolerance edges to better understand how OA and temperature will combine to physiologically challenge inter-tidal organisms.


Assuntos
Gastrópodes , Animais , Dióxido de Carbono , Chile , Concentração de Íons de Hidrogênio , Água do Mar , Temperatura
19.
Sci Total Environ ; 693: 133469, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31635008

RESUMO

To make robust projectios of the impacts of climate change, it is critical to understand how abiotic factors may interact to constrain the distribution and productivity of marine flora and fauna. We evaluated the effects of projected end of the century ocean acidification (OA) and warming (OW) on the thermal tolerance of an important living marine resource, the sea urchin Loxechinus albus, a benthic shallow water coastal herbivore inhabiting part of the Pacific coast of South America. After exposing young juveniles for a 1-month period to contrasting pCO2 (~500 and 1400 µatm) and temperature (~15 °C and 20 °C) levels, critical thermal maximum (CTmax) and minimum (CTmin) as well as thermal tolerance polygons were assessed based on self-righting success as an end point. Transcription of heat shock protein 70 (HSP70), a chaperone protecting cellular proteins from environmental stress, was also measured. Exposure to elevated pCO2 significantly reduced thermal tolerance by increasing CTmin at both experimental temperatures and decreasing CTmax at 20 °C. There was also a strong synergistic effect of OA × OW on HSP70 transcription levels which were 75 times higher than in control conditions. If this species is unable to adapt to elevated pCO2 in the future, the reduction in thermal tolerance and HSP response suggests that near-future warming and OA will disrupt their performance and reduce their distribution with ecological and economic consequences. Given the wider latitudinal range (6 to 56°S) and environmental tolerance of L. albus compared to other members of this region's benthic invertebrate community, OW and OA may cause substantial changes to the coastal fauna along this geographical range.


Assuntos
Monitoramento Ambiental , Ouriços-do-Mar/fisiologia , Água do Mar/química , Estresse Fisiológico , Animais , Mudança Climática , Concentração de Íons de Hidrogênio , Invertebrados , Oceanos e Mares , América do Sul , Temperatura
20.
Environ Pollut ; 248: 565-573, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30831353

RESUMO

Coastal habitats, in particular sandy beaches, are becoming increasingly exposed to artificial light pollution at night (ALAN). Yet, only a few studies have this far assessed the effects of ALAN on the species inhabiting these ecosystems. In this study we assessed the effects of ALAN on Tylos spinulosus, a prominent wrack-consumer isopod living in sandy beaches of north-central Chile. This species burrows in the sand during daylight and emerges at night to migrate down-shore, so we argue it can be used as a model species for the study of ALAN effects on coastal nocturnal species. We assessed whether ALAN alters the distribution and locomotor activity of this isopod using a light system placed in upper shore sediments close to the edge of the dunes, mimicking light intensities measured near public lighting. The response of the isopods was compared to control transects located farther away and not exposed to artificial light. In parallel, we measured the isopods' locomotor activity in the laboratory using actographs that recorded their movement within mesocosms simulating the beach surface. Measurements in the field indicated a clear reduction in isopod abundance near the source of the light and a restriction of their tidal distribution range, as compared to control transects. Meanwhile, the laboratory experiments showed that in mesocosms exposed to ALAN, isopods exhibited reduced activity and a circadian rhythm that was altered and even lost after a few days. Such changes with respect to control mesocosms with a natural day/night cycle suggest that the changes observed in the field were directly related to a disruption in the locomotor activity of the isopods. All together these results provide causal evidence of negative ALAN effects on this species, and call for further research on other nocturnal sandy beach species that might become increasingly affected by ALAN.


Assuntos
Ritmo Circadiano/efeitos da radiação , Poluição Ambiental/efeitos adversos , Isópodes/fisiologia , Iluminação/efeitos adversos , Locomoção/efeitos da radiação , Animais , Chile , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...