Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12424, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528172

RESUMO

GBM (Glioblastoma) is the most lethal CNS (Central nervous system) tumor in adults, which inevitably develops resistance to standard treatments leading to recurrence and mortality. TRIB1 is a serine/threonine pseudokinase which functions as a scaffold platform that initiates degradation of its substrates like C/EBPα through the ubiquitin proteasome system and also activates MEK and Akt signaling. We found that increased TRIB1 gene expression associated with worse overall survival of GBM patients across multiple cohorts. Importantly, overexpression of TRIB1 decreased RT/TMZ (radiation therapy/temozolomide)-induced apoptosis in patient derived GBM cell lines in vitro. TRIB1 directly bound to MEK and Akt and increased ERK and Akt phosphorylation/activation. We also found that TRIB1 protein expression was maximal during G2/M transition of cell cycle in GBM cells. Furthermore, TRIB1 bound directly to HDAC1 and p53. Importantly, mice bearing TRIB1 overexpressing tumors had worse overall survival. Collectively, these data suggest that TRIB1 induces resistance of GBM cells to RT/TMZ treatments by activating the cell proliferation and survival pathways thus providing an opportunity for developing new targeted therapeutics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Apoptose/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
2.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231013

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmoplaquinas/genética , Modelos Animais de Doenças , Coração , Humanos , Camundongos , Fenótipo
3.
Cells ; 11(4)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203314

RESUMO

Zonula occludens-1 (ZO-1) is an intracellular scaffolding protein that orchestrates the anchoring of membrane proteins to the cytoskeleton in epithelial and specialized tissue including the heart. There is clear evidence to support the central role of intracellular auxiliary proteins in arrhythmogenesis and previous studies have found altered ZO-1 expression associated with atrioventricular conduction abnormalities. Here, using human cardiac tissues, we identified all three isoforms of ZO-1, canonical (Transcript Variant 1, TV1), CRA_e (Transcript Variant 4, TV4), and an additionally expressed (Transcript Variant 3, TV3) in non-failing myocardium. To investigate the role of ZO-1 on ventricular arrhythmogenesis, we generated a haploinsufficient ZO-1 mouse model (ZO-1+/-). ZO-1+/- mice exhibited dysregulated connexin-43 protein expression and localization at the intercalated disc. While ZO-1+/- mice did not display abnormal cardiac function at baseline, adrenergic challenge resulted in rhythm abnormalities, including premature ventricular contractions and bigeminy. At baseline, ventricular myocytes from the ZO-1+/- mice displayed prolonged action potential duration and spontaneous depolarizations, with ZO-1+/- cells displaying frequent unsolicited (non-paced) diastolic depolarizations leading to spontaneous activity with multiple early afterdepolarizations (EADs). Mechanistically, ZO-1 deficient myocytes displayed a reduction in sodium current density (INa) and an increased sensitivity to isoproterenol stimulation. Further, ZO-1 deficient myocytes displayed remodeling in ICa current, likely a compensatory change. Taken together, our data suggest that ZO-1 deficiency results in myocardial substrate susceptible to triggered arrhythmias.


Assuntos
Miocárdio , Junções Íntimas , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
J Pers Med ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065787

RESUMO

Desmoplakin (DSP) is a large (~260 kDa) protein found in the desmosome, a subcellular complex that links the cytoskeleton of one cell to its neighbor. A mutation 'hot-spot' within the NH2-terminal third of the DSP protein (specifically, residues 299-515) is associated with both cardiomyopathies and skin defects. In select DSP variants, disease is linked specifically to the uncovering of a previously-occluded calpain target site (residues 447-451). Here, we partially stabilize these calpain-sensitive DSP clinical variants through the addition of a secondary single point mutation-tyrosine for leucine at amino acid position 518 (L518Y). Molecular dynamic (MD) simulations and enzymatic assays reveal that this stabilizing mutation partially blocks access to the calpain target site, resulting in restored DSP protein levels. This 'molecular band-aid' provides a novel way to maintain DSP protein levels, which may lead to new strategies for treating this subset of DSP-related disorders.

5.
Sci Rep ; 9(1): 13188, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515494

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Miócitos Cardíacos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Miócitos Cardíacos/citologia
6.
Biophys Rev ; 10(4): 961-971, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29876873

RESUMO

Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.

7.
J Mol Cell Cardiol ; 112: 49-57, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28870505

RESUMO

The contractile property of the myocardium is maintained by cell-cell junctions enabling cardiomyocytes to work as a syncytium. Alterations in cell-cell junctions are observed in heart failure, a disease characterized by the activation of Transforming Growth Factor beta 1 (TGFß1). While TGFß1 has been implicated in diverse biologic responses, its molecular function in controlling cell-cell adhesion in the heart has never been investigated. Cardiac-specific transgenic mice expressing active TGFß1 were generated to model the observed increase in activity in the failing heart. Activation of TGFß1 in the heart was sufficient to drive ventricular dysfunction. To begin to understand the function of this important molecule we undertook an extensive structural analysis of the myocardium by electron microscopy and immunostaining. This approach revealed that TGFß1 alters intercalated disc structures and cell-cell adhesion in ventricular myocytes. Mechanistically, we found that TGFß1 induces the expression of neural adhesion molecule 1 (NCAM1) in cardiomyocytes in a p38-dependent pathway, and that selective targeting of NCAM1 was sufficient to rescue the cell adhesion defect observed when cardiomyocytes were treated with TGFß1. Importantly, NCAM1 was upregulated in human heart samples from ischemic and non-ischemic cardiomyopathy patients and NCAM1 protein levels correlated with the degree of TGFß1 activity in the human cardiac ventricle. Overall, we found that TGFß1 is deleterious to the heart by regulating the adhesion properties of cardiomyocytes in an NCAM1-dependent mechanism. Our results suggest that inhibiting NCAM1 would be cardioprotective, counteract the pathological action of TGFß1 and reduce heart failure severity.


Assuntos
Antígeno CD56/metabolismo , Miocárdio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Adesão Celular , Eletrocardiografia , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Transgênicos , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Ratos , Disfunção Ventricular
8.
Biophys Rev ; 9(3): 245-258, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28510116

RESUMO

The obscurin family of polypeptides is essential for normal striated muscle function and contributes to the pathogenesis of fatal diseases, including cardiomyopathies and cancers. The single mammalian obscurin gene, OBSCN, gives rise to giant (∼800 kDa) and smaller (∼40-500 kDa) proteins that are composed of tandem adhesion and signaling motifs. Mammalian obscurin proteins are expressed in a variety of cell types, including striated muscles, and localize to distinct subcellular compartments where they contribute to diverse cellular processes. Obscurin homologs in Caenorhabditis elegans and Drosophila possess a similar domain architecture and are also expressed in striated muscles. The long sought after question, "what does obscurin do?" is complex and cannot be addressed without taking into consideration the subcellular distribution of these proteins and local isoform concentration. Herein, we present an overview of the functions of obscurins and begin to define the intricate relationship between their subcellular distributions and functions in striated muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...