Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 199: 59-66, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30825498

RESUMO

Fasciolosis is a zoonotic world widely distributed disease caused by the liver fluke Fasciola hepatica, which affects animals and occasionally humans. On the other hand, natural iron oxide particles like magnetite are commonly found in soils where they participate in a wide range of environmental processes like organic matter decomposition, the adsorption of ions and molecules, and chemical reactions that involve the participation of soil living microorganisms. Since Fasciola eggs become soil components after being released with the infected animal faeces, this study focused on the characterization of the natural interaction between natural sub-micrometric magnetite particles and F. hepatica eggs. Our results indicate that particle binding to the F. hepatica egg depends on the particle size and it is also related to the exposed surface area since any condition that favors particle agglomeration leads to the reduction of the particle-eggshell binding intensity. Interestingly, this binding was avoided when proteins or phosphate were incorporated to the incubation solution, but not after formaldehyde fixation of eggs. Finally, when eggs were exposed to an external magnet after being incubated with magnetite particles, they were attracted to it without particles being detached, indicating a strong type of bonding between them. Therefore, the results presented here give new insights in order to improve the possibility of harvesting F. hepatica eggs by using magnetic materials.


Assuntos
Fasciola hepatica/metabolismo , Óxido Ferroso-Férrico/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Fasciolíase/parasitologia , Fasciolíase/veterinária , Fezes/parasitologia , Fixadores/farmacologia , Formaldeído/farmacologia , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Distribuição Normal , Óvulo/metabolismo , Tamanho da Partícula , Peroxidase/análise , Fosfatos/farmacologia , Proteínas/farmacologia , Ovinos , Doenças dos Ovinos/parasitologia , Solo/química , Solo/parasitologia , Espectrometria por Raios X
2.
Sci Rep ; 6: 38733, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27924942

RESUMO

This work aims to demonstrate the need for in silico design via numerical simulation to produce optimal Fe3O4-based magnetic nanoparticles (MNPs) for magnetic hyperthermia by minimizing the impact of intracellular environments on heating efficiency. By including the relevant magnetic parameters, such as magnetic anisotropy and dipolar interactions, into a numerical model, the heating efficiency of as prepared colloids was preserved in the intracellular environment, providing the largest in vitro specific power absorption (SPA) values yet reported. Dipolar interactions due to intracellular agglomeration, which are included in the simulated SPA, were found to be the main cause of changes in the magnetic relaxation dynamics of MNPs under in vitro conditions. These results pave the way for the magnetism-based design of MNPs that can retain their heating efficiency in vivo, thereby improving the outcome of clinical hyperthermia experiments.

3.
Nanomedicine ; 12(4): 909-919, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26767515

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONS) were synthesized by thermal decomposition of an organometallic precursor at high temperature and coated with a bi-layer composed of oleic acid and methoxy-polyethylene glycol-phospholipid. The formulations were named SPION-PEG350 and SPION-PEG2000. Transmission electron microscopy, X-ray diffraction and magnetic measurements show that the SPIONs are near-spherical, well-crystalline, and have high saturation magnetization and susceptibility. FTIR spectroscopy identifies the presence of oleic acid and of the conjugates mPEG for each sample. In vitro biocompatibility of SPIONS was investigated using three cell lines; up to 100µg/ml SPION-PEG350 showed non-toxicity, while SPION-PEG2000 showed no signal of toxicity even up to 200µg/ml. The uptake of SPIONS was detected using magnetization measurement, confocal and atomic force microscopy. SPION-PEG2000 presented the highest internalization capacity, which should be correlated with the mPEG chain size. The in vivo results suggested that SPION-PEG2000 administration in mice triggered liver and kidney injury. FROM THE CLINICAL EDITOR: The potential use of superparamagnetic iron oxide nanoparticles (SPIONS) in the clinical setting have been studied by many researchers. The authors synthesized two types of SPIONS here and investigated the physical properties and biological compatibility. The findings should provide more data on the design of SPIONS for clinical application in the future.


Assuntos
Materiais Revestidos Biocompatíveis/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas de Magnetita/química , Camundongos , Ácido Oleico/química , Polietilenoglicóis/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...