Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; : 1-16, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754013

RESUMO

Biosensors are being studied extensively for their ability to detect and analyze molecules. There has been a growing interest in combining molecular imprinted polymers (MIPs) and aptamers to create hybrid recognition elements that offer advantages such as target binding, sensitivity, selectivity, and stability. These hybrid elements have been successfully used in identifying a wide range of analytes in food samples. However, the application of MIP-based aptasensors in different sensing approaches is still challenging due to the low conductivity of MIPs-aptamers and limited adsorption capacity of MIPs. To address these limitations, researchers have been exploring the use of nanomaterials (NMs) to design efficient multiple-recognition systems that exploit the synergies between aptamers and MIPs. These hybrid systems can enhance the sensitivity and selectivity of MIP-based aptasensors in quantifying analytical samples. This review provides a comprehensive overview of recent advancements in the field of MIP-based aptasensors. It also introduces technologies that combine MIPs and aptamers to achieve higher sensitivity and selectivity in quantifying analytical samples. The review also highlights potential future trends and practical approaches that can be employed to address the limitations of MIP-based aptasensors, including the use of new NMs, the development of new fabrication techniques, and the integration of MIP-based aptasensors with other analytical tools.

2.
Pathol Res Pract ; 256: 155218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458087

RESUMO

Cancer remains one of the most pressing health challenges globally, necessitating ongoing research into innovative therapeutic approaches. This article explores two critical factors influencing cancer: ncRNAs and nanotherapy. The role of ncRNAs, including microRNAs and long non-coding RNAs, in cancer pathogenesis, progression, and treatment resistance is elucidated. Additionally, the potential of nanotherapy, leveraging nanoscale materials for targeted drug delivery and enhanced therapeutic efficacy, is investigated. By comprehensively analyzing the molecular mechanisms underlying ncRNA dysregulation and the promise of nanotherapy in cancer treatment, this article aims to provide valuable insights into novel therapeutic strategies for combating cancer.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Longo não Codificante/genética
3.
Talanta ; 274: 125962, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537355

RESUMO

The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.


Assuntos
Técnicas Biossensoriais , Água Potável , Plásticos , Água Potável/microbiologia , Água Potável/análise , Técnicas Biossensoriais/métodos , Plásticos/química , Poluentes Químicos da Água/análise , Microbiologia da Água , Humanos
4.
Anal Methods ; 16(9): 1306-1322, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38344759

RESUMO

Electrochemical techniques are commonly used to analyze and screen various environmental pathogens. When used in conjunction with other optical recognition methods, it can extend the sensing range, lower the detection limit, and offer mutual validation. Nowadays, electrochemical-optical dual-mode biosensors have ensured the accuracy of test results by integrating two signals into one, indicating their potential use in primary food safety quantitative assays and screening tests. Particularly, visible optical signals from electrochemical/colorimetric dual-mode biosensors could meet the demand for real-time screening of microbial pathogens. While electrochemical-optical dual-mode probes have been receiving increasing attention, there is limited emphasis on the design approaches for sensors intended for microbial pathogens. Here, we review the recent progress in the merging of optical and electrochemical techniques, including fluorescence, colorimetry, surface plasmon resonance (SPR), and surface enhanced Raman spectroscopy (SERS). This study particularly emphasizes the reporting of various sensing performances, including sensing principles, types, cutting-edge design approaches, and applications. Finally, some concerns and upcoming advancements in dual-mode probes are briefly outlined.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Eletroquímicas/métodos , Inocuidade dos Alimentos , Colorimetria
5.
Pathol Res Pract ; 254: 155072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228039

RESUMO

MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression. They are involved in a wide range of biological processes, including development, differentiation, cell cycle regulation, and response to stress. Numerous studies have demonstrated that miRNAs are present in different bodily fluids, which could serve as an important biomarker. The advancement of techniques and strategies for the identification of cancer-associated miRNAs in human specimens offers a novel opportunity to diagnose cancer in early stages, predict patient prognosis and evaluate response to treatment. Isothermal techniques including loop-mediated isothermal amplification (LAMP), rolling circle amplification (RCA), or recombinase polymerase amplification (RPA) offer simplicity, efficiency, and rapidity in miRNA detection processes. In contrast to traditional PCR (polymerase chain reaction), these techniques analysis and quantify miRNA molecules in specimens using a single constant temperature. In this comprehensive review, we summarized the recent advances in cancer-related miRNA detection via highly sensitive isothermal amplification methods by more focusing on the involved mechanism.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética
6.
Crit Rev Anal Chem ; : 1-18, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193140

RESUMO

TORCH infection is a significant risk factor for severe fetal damage, especially congenital malformations. Screening pregnant women for TORCH pathogens could reduce the incidence of adverse pregnancy outcomes and prevent birth defects. Hence, timely identification and inhibition of TORCH infections are effective ways to successfully prevent them in pregnant women. Recently, the superiority of biosensors in TORCH pathogen sensing has been emphasized due to their intrinsic benefits, such as rapid response time, portability, cost-effectiveness, much friendlier preparation and determination steps. With the introduction of advanced nanomaterials into biosensing, the diagnostic properties of biosensors have significantly improved. This study core presents and debates the current progress in biosensing systems for TORCH pathogens using various artificial and natural receptors. The incorporation of nanomaterials into various transduction systems can enhance diagnostic performance. The key performance characteristics of optical and electrochemical biosensors, such as response time, limit of detection (LOD), and linear detection range, are systematically discussed, along with the current TORCH pathogens used for constructing biosensors. Finally, the major problems that exist for converting scientific investigation into product development are also outlined.

7.
Crit Rev Anal Chem ; : 1-14, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165810

RESUMO

The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.

8.
Int J Med Inform ; 183: 105338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211423

RESUMO

BACKGROUND: Machine learning could be used for prognosis/diagnosis of maternal and neonates' diseases by analyzing the data sets and profiles obtained from a pregnant mother. PURPOSE: We aimed to develop a prediction model based on machine learning algorithms to determine important maternal characteristics and neonates' anthropometric profiles as the predictors of neonates' health status. METHODS: This study was conducted among 1280 pregnant women referred to healthcare centers to receive antenatal care. We evaluated several machine learning methods, including support vector machine (SVM), Ensemble, K-Nearest Neighbor (KNN), Naïve Bayes (NB), and Decision tree classifiers, to predict newborn health state. RESULTS: The minimum redundancy-maximum relevance (MRMR) algorithm revealed that variables, including head circumference of neonates, pregnancy intention, and drug consumption history during pregnancy, were top-scored features for classifying normal and unhealthy infants. Among the different classification methods, the SVM classifier had the best performance. The average values of accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC) in the test group were 75%, 75%, 76%, 76%, and 65%, respectively, for SVM model. CONCLUSION: Machine learning methods can efficiently forecast the neonate's health status among pregnant women. This study proposed a new approach toward the integration of maternal data and neonate profiles to facilitate the prediction of neonates' health status.


Assuntos
Algoritmos , Inteligência Artificial , Recém-Nascido , Humanos , Feminino , Gravidez , Teorema de Bayes , Aprendizado de Máquina , Nível de Saúde
9.
Clin Chim Acta ; 553: 117741, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38158002

RESUMO

Due to the growing demand for detection technologies, there has been significant interest in the development of integrated dual-modal sensing technologies, which involve combining two signal transduction channels into a single technique, particularly in the context of food safety. The integration of two detection signals not only improves diagnostic performance by reducing assumptions, but also enhances diagnostic functions with increased application flexibility, improved accuracy, and a wider detection linear range. The top two output signals for emerging dual-modal probes are fluorescent and colorimetric, due to their exceptional advantages for real-time sensitive sensing and point-of-care applications. With the rapid progress of nanotechnology and material chemistry, the integrated colorimetric/fluorimetric dual-mode systems show immense potential in sensing foodborne pathogenic bacteria. In this comprehensive review, we present a detailed summary of various colorimetric and fluorimetric dual-modal sensing methods, with a focus on their application in detecting foodborne bacteria. We thoroughly examine the sensing methodologies and the underlying principles of the signal transduction systems, and also discuss the challenges and future prospects for advancing research in this field.


Assuntos
Técnicas Biossensoriais , Colorimetria , Humanos , Bactérias , Corantes , Fluorometria , Nanotecnologia
10.
Pathol Res Pract ; 253: 154993, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118217

RESUMO

Millions of individuals worldwide suffer from the complicated disease known as cancer. Though they frequently have serious side effects and can harm healthy cells, the current cancer treatments, such as radiation therapy and chemotherapy, are effective in many cases. Targeted drug delivery systems have emerged as a promising new paradigm in cancer treatment because they can deliver drugs directly to cancer cells with minimal harm to healthy cells. This review aims to give a broad overview of the state of targeted drug delivery systems for cancer treatment and investigate the technology's potential in the future. We'll go through the various kinds of targeted drug delivery systems, their drawbacks, the most recent developments, and possible future paths for further study and creation. This review aims to provide an overview of the current status of targeted drug delivery systems for cancer treatment, including the different types of targeted drug delivery systems, their limitations, recent advancements, and potential future directions for research and development. By examining the field's current state and exploring prospects, this review aims to highlight the potential of targeted drug delivery systems for improving cancer treatment and ultimately enhancing patient outcomes.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
11.
Sensors (Basel) ; 22(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36236334

RESUMO

A modified monopole patch antenna for microwave-based hemorrhagic or ischemic stroke recognition is presented in this article. The designed antenna is fabricated on a cost-effective FR-4 lossy material with a 0.02 loss tangent and 4.4 dielectric constant. Its overall dimensions are 0.32 λ × 0.28 λ × 0.007 λ, where λ is the lower bandwidth 1.3 GHz frequency wavelength. An inset feeding approach is utilized to feed the antenna to reduce the input impedance (z = voltage/current). A total bandwidth (below -10 dB) of 2.4 GHz (1.3-3.7 GHz) is achieved with an effective peak gain of over 6 dBi and an efficiency of over 90%. A time-domain analysis confirms that the antenna produces minimal signal distortion. Simulated and experimental findings share a lot of similarities. Brain tissue is penetrated by the antenna to a satisfactory degree, while still exhibiting a safe specific absorption rate (SAR). The maximum SAR value measured for the head model is constrained to be equal to or below 0.1409 W/kg over the entire usable frequency band. Evaluation of theoretical and experimental evidence indicates the intended antenna is appropriate for Microwave Imaging (MWI) applications.


Assuntos
Imageamento de Micro-Ondas , Tecnologia sem Fio , Encéfalo , Desenho de Equipamento , Micro-Ondas
12.
J Electr Bioimpedance ; 13(1): 88-95, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694881

RESUMO

Cardiovascular disease (CVD) represents the leading cause of mortality worldwide. In order to diagnose CVDs, there are a range of detection methods, among them, the impedance cardiography technique (ICG). It is a non-invasive and low-cost method. In this paper, we highlight recent advances and developments of the CDVs diagnosis mainly by the ICG method. We considered papers published during the last five years (from 2017 until 2022). Based on this study, we expressed the need for an ICG database for the different CDVs.

13.
J Med Signals Sens ; 11(2): 92-99, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268097

RESUMO

BACKGROUND: Sometimes, women find it difficult to conceive a baby and others use contraceptives that often have side effects. Researchers have already established the importance of measuring basal body temperature (BBT) and the potential of hydrogen (pH). METHOD: We have designed and realized a device that allows the simultaneous measurement of the BBT and the pH. We used an Arduino Uno board, a pH sensor, and a temperature sensor. The device communicates with a smartphone, can be integrated into all e-health platforms, and can be used at home. We validated our ovulation detector by a measurement campaign on a group of twenty women. If the pH is >7 and at the same time, the BBT is minimum and <36.5°C, the women is in ovulation phase. If the pH is ≤7 and in the same time, the BBT is between 36.5°C and 37°C, the women are in preovulation or follicular phase. If the pH is ≤7 and in the same time, the BBT is >36.5°C, the women are in postovulation or luteal phase. RESULTS: We tested the contraceptive aspect of our ovulometer on a set of seven women. We also tested the help of conceiving babies by having intercourse during the ovulation period fixed by our ovulation detector. The results are satisfactory. CONCLUSIONS: In the final version of our device, we displayed just in "fertility period" if the pH is ≥7 and the BBT is <36.5°C else we displayed in "nonfertility period."

14.
J Electr Bioimpedance ; 12(1): 50-62, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35069942

RESUMO

Electrical impedance tomography (EIT) is a low-cost noninvasive imaging method. The main purpose of this paper is to highlight the main aspects of the EIT method and to review the recent advances and developments. The advances in instrumentation and in the different image reconstruction methods and systems are demonstrated in this review. The main applications of the EIT are presented and a special attention made to the papers published during the last years (from 2015 until 2020). The advantages and limitations of EIT are also presented. In conclusion, EIT is a promising imaging approach with a strong potential that has a large margin of progression before reaching the maturity phase.

15.
Artigo em Inglês | MEDLINE | ID: mdl-32982399

RESUMO

INTRODUCTION: Early detection of breast cancer saves lives. Existing detecting techniques are invasive. Electrical bioimpedance is a noninvasive technique and has a high diagnostic potential. METHODS: An impedance value different from the normal can predict a physiological abnormality. The idea is to use a designed bioimpedance device to early detect breast cancer. A low-frequency current (1 kHz, 0.9 mA) is injected to each breast to measure the extracellular resistances. The resistances of the two breasts are then measured, and if there is a significant difference, warning is displayed. The performance was tested on a set of reference resistors, and the validation was done in vitro on (Na+Cl-) solutions and in vivo on a group of forty volunteer women. RESULTS: The results confirm that the electrical conductivity of an ionic solution is proportional to its concentration. The concentration and the resistance are strongly correlated (correlation coefficient of 0.97). The accuracy and the repeatability of the measures were satisfactory. Early detection means that we can detect small extracellular concentration variations into the breast (from 0.6 g/l). In vivo measurements made it possible to set the threshold at 50 ohm. If the difference between the two measured breast resistances is greater than this threshold, we advise the patient to consult a doctor promptly. CONCLUSION: The difference between measured resistances of the right and left breast is a pertinent parameter to early detect the presence of a cancer. The lowest resistance value (RR or RL) can provide information on the breast affected by the cancer (right or left). Various improvements in the system are possible but already the results are encouraging. In the future, this system could be integrated into a bra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...