Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994607

RESUMO

Interests in covalent drugs have grown in modern drug discovery as they could tackle challenging targets traditionally considered "undruggable". The identification of covalent binders to target proteins typically involves directly measuring protein covalent modifications using high-resolution mass spectrometry. With a continually expanding library of compounds, conventional mass spectrometry platforms such as LC-MS and SPE-MS have become limiting factors for high-throughput screening. Here, we introduce a prototype high-resolution acoustic ejection mass spectrometry (AEMS) system for the rapid screening of a covalent modifier library comprising ∼10,000 compounds against a 50 kDa-sized target protein─Werner syndrome helicase. The screening samples were arranged in a 1536-well format. The sample buffer containing high-concentration salts was directly analyzed without any cleanup steps, minimizing sample preparation efforts and ensuring protein stability. The entire AEMS analysis process could be completed within a mere 17 h. An automated data analysis tool facilitated batch processing of the sample data and quantitation of the formation of various covalent protein-ligand adducts. The screening results displayed a high degree of fidelity, with a Z' factor of 0.8 and a hit rate of 2.3%. The identified hits underwent orthogonal testing in a biochemical activity assay, revealing that 75% were functional antagonists of the target protein. Notably, a comparative analysis with LC-MS showcased the AEMS platform's low risk of false positives or false negatives. This innovative platform has enabled robust high-throughput covalent modifier screening, featuring a 10-fold increase in library size and a 10- to 100-fold increase in throughput when compared with similar reports in the existing literature.

2.
Mol Cancer Ther ; : OF1-OF14, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691847

RESUMO

Many tumor types harbor alterations in the Hippo pathway, including mesothelioma, where a high percentage of cases are considered YAP1/TEAD dependent. Identification of autopalmitoylation sites in the hydrophobic palmitate pocket of TEADs, which may be necessary for YAP1 protein interactions, has enabled modern drug discovery platforms to generate compounds that allosterically inhibit YAP1/TEAD complex formation and transcriptional activity. We report the discovery and characterization of a novel YAP1/TEAD inhibitor MRK-A from an aryl ether chemical series demonstrating potent and specific inhibition of YAP1/TEAD activity. In vivo, MRK-A showed a favorable tolerability profile in mice and demonstrated pharmacokinetics suitable for twice daily oral dosing in preclinical efficacy studies. Importantly, monotherapeutic targeting of YAP1/TEAD in preclinical models generated regressions in a mesothelioma CDX model; however, rapid resistance to therapy was observed. RNA-sequencing of resistant tumors revealed mRNA expression changes correlated with the resistance state and a marked increase of hepatocyte growth factor (HGF) expression. In vitro, exogenous HGF was able to fully rescue cytostasis induced by MRK-A in mesothelioma cell lines. In addition, co-administration of small molecule inhibitors of the MET receptor tyrosine kinase suppressed the resistance generating effect of HGF on MRK-A induced growth inhibition. In this work, we report the structure and characterization of MRK-A, demonstrating potent and specific inhibition of YAP1/TAZ-TEAD-mediated transcriptional responses, with potential implications for treating malignancies driven by altered Hippo signaling, including factors resulting in acquired drug resistance.

3.
Anal Chim Acta ; 1225: 340234, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36038238

RESUMO

Peptide therapeutics are a growing modality in the pharmaceutical industry and expanding these therapeutics to hit intracellular targets would require establishing cell permeability. Rapid measurement target-agnostic cell permeability of peptides is still analytically challenging. In this study, we demonstrate the development of a rapid high-throughput label-free methodology based on a MALDI-hydrogen-deuterium exchange mass spectrometry (MALDI-HDX-MS) approach to rank-order peptide cell membrane permeability using live THP-1 and AsPc-1 cells. Peptides were incubated in the presence of live cells and their permeability into the cells over time was measured by MALDI-HDX-MS. A differential hydrogen-deuterium exchange approach was used to distinguish the peptides outside of the cells from those inside. The peptides on the outside of the cells were labeled using sufficiently short exposure to deuterium oxide, while the peptides inside of the cells were protected from labeling as a result of permeation into the cells. The deuterium labeled and peak area ratios of unlabeled peptides were compared and plotted over time. The developed methodology, referred to as Cell-based Approach Membrane Permeability Assay (CAMPA), was applied to study an array of 24 diverse peptides including cell-penetrating peptides, stapled and macrocyclic peptides. The cell membrane permeability results observed by CAMPA were corroborated by previously reported in literature data. The CAMPA MALDI-MS analysis was fully automated including MS data processing using internally developed Python scripts. Moreover, CAMPA was demonstrated to be useful for differentiating passive and active cell transportation by using an endocytosis inhibitor in cell incubation media for selected peptides.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Permeabilidade da Membrana Celular , Deutério/química , Medição da Troca de Deutério/métodos , Hidrogênio/química , Peptídeos , Permeabilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Eur J Med Chem ; 224: 113686, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34303079

RESUMO

Pathway activating mutations of the transcription factor NRF2 and its negative regulator KEAP1 are strongly correlative with poor clinical outcome with pemetrexed/carbo(cis)platin/pembrolizumab (PCP) chemo-immunotherapy in lung cancer. Despite the strong genetic support and therapeutic potential for a NRF2 transcriptional inhibitor, currently there are no known direct inhibitors of the NRF2 protein or its complexes with MAF and/or DNA. Herein we describe the design of a novel and high-confidence homology model to guide a medicinal chemistry effort that resulted in the discovery of a series of peptides that demonstrate high affinity, selective binding to the Antioxidant Response Element (ARE) DNA and thereby displace NRF2-MAFG from its promoter, which is an inhibitory mechanism that to our knowledge has not been previously described. In addition to their activity in electrophoretic mobility shift (EMSA) and TR-FRET-based assays, we show significant dose-dependent ternary complex disruption of NRF2-MAFG binding to DNA by SPR, as well as cellular target engagement by thermal destabilization of HiBiT-tagged NRF2 in the NCI-H1944 NSCLC cell line upon digitonin permeabilization, and SAR studies leading to improved cellular stability. We report the characterization and unique profile of lead peptide 18, which we believe to be a useful in vitro tool to probe NRF2 biology in cancer cell lines and models, while also serving as an excellent starting point for additional in vivo optimization toward inhibition of NRF2-driven transcription to address a significant unmet medical need in non-small cell lung cancer (NSCLC).


Assuntos
DNA/química , Fator de Transcrição MafG/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Peptídeos/química , Elementos de Resposta Antioxidante/efeitos dos fármacos , DNA/metabolismo , Desenho de Fármacos , Estabilidade de Medicamentos , Ensaio de Desvio de Mobilidade Eletroforética , Meia-Vida , Células HeLa , Humanos , Fator de Transcrição MafG/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Relação Estrutura-Atividade
5.
J Med Chem ; 64(7): 3911-3939, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33755451

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.


Assuntos
Aminoquinolinas/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Nucleosídeos/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Feminino , Humanos , Camundongos SCID , Simulação de Acoplamento Molecular , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/metabolismo , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Relação Estrutura-Atividade
6.
ACS Med Chem Lett ; 11(9): 1688-1693, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32944135

RESUMO

Protein arginine methyltransferase 5 (PRMT5) belongs to a family of enzymes that regulate the posttranslational modification of histones and other proteins via methylation of arginine. Methylation of histones is linked to an increase in transcription and regulates a manifold of functions such as signal transduction and transcriptional regulation. PRMT5 has been shown to be upregulated in the tumor environment of several cancer types, and the inhibition of PRMT5 activity was identified as a potential way to reduce tumor growth. Previously, four different modes of PRMT5 inhibition were known-competing (covalently or non-covalently) with the essential cofactor S-adenosyl methionine (SAM), blocking the substrate binding pocket, or blocking both simultaneously. Herein we describe an unprecedented conformation of PRMT5 in which the formation of an allosteric binding pocket abrogates the enzyme's canonical binding site and present the discovery of potent small molecule allosteric PRMT5 inhibitors.

7.
J Cell Mol Med ; 23(10): 7063-7077, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31449347

RESUMO

This study reports the establishment of a bone marrow mononuclear cell (BMMC) 3D culture model and the application of this model to define sensitivity and resistance biomarkers of acute myeloid leukaemia (AML) patient bone marrow samples in response to Cytarabine (Ara-C) treatment. By mimicking physiological bone marrow microenvironment, the growth conditions were optimized by using frozen BMMCs derived from healthy donors. Healthy BMMCs are capable of differentiating into major hematopoietic lineages and various types of stromal cells in this platform. Cryopreserved BMMC samples from 49 AML patients were characterized for ex vivo growth and sensitivity to Ara-C. RNA sequencing was performed for 3D and 2D cultures to determine differential gene expression patterns. Specific genetic mutations and/or gene expression signatures associated with the ability of the ex vivo expansion and response to Ara-C were elucidated by whole-exome and RNA sequencing. Data analysis identified unique gene expression signatures and novel genetic mutations associated with sensitivity to Ara-C treatment of proliferating AML specimens and can be used as predictive therapeutic biomarkers to determine the optimal treatment regimens. Furthermore, these data demonstrate the translational value of this ex vivo platform which should be widely applicable to evaluate other therapies in AML.


Assuntos
Citarabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Modelos Biológicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Células da Medula Óssea/metabolismo , Linhagem Celular Tumoral , Citarabina/farmacologia , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Resultado do Tratamento
8.
ACS Infect Dis ; 3(2): 112-118, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183184

RESUMO

Human cytomegalovirus DNA polymerase comprises a catalytic subunit, UL54, and an accessory subunit, UL44, the interaction of which may serve as a target for the development of new antiviral drugs. Using a high-throughput screen, we identified a small molecule, (5-((dimethylamino)methylene-3-(methylthio)-6,7-dihydrobenzo[c]thiophen-4(5H)-one), that selectively inhibits the interaction of UL44 with a UL54-derived peptide in a time-dependent manner, full-length UL54, and UL44-dependent long-chain DNA synthesis. A crystal structure of the compound bound to UL44 revealed a covalent reaction with lysine residue 60 and additional noncovalent interactions that cause steric conflicts that would prevent the UL44 connector loop from interacting with UL54. Analyses of the reaction of the compound with model substrates supported a resonance-stabilized conjugation mechanism, and substitution of the lysine reduced the ability of the compound to inhibit UL44-UL54 peptide interactions. This novel covalent inhibitor of polymerase subunit interactions may serve as a starting point for new, needed drugs to treat human cytomegalovirus infections.


Assuntos
Antivirais/farmacologia , Citomegalovirus/enzimologia , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/metabolismo , Regulação Alostérica , Sítio Alostérico , Antivirais/química , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Ensaios de Triagem em Larga Escala , Humanos , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/química
9.
Mol Cancer Ther ; 15(4): 548-59, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26832798

RESUMO

The MAPK pathway is frequently activated in many human cancers, particularly melanomas. A single-nucleotide mutation in BRAF resulting in the substitution of glutamic acid for valine (V(600E)) causes constitutive activation of the downstream MAPK pathway. Selective BRAF and MEK inhibitor therapies have demonstrated remarkable antitumor responses in BRAF(V600) (E)-mutant melanoma patients. However, initial tumor shrinkage is transient and the vast majority of patients develop resistance. We previously reported that SCH772984, an ERK 1/2 inhibitor, effectively suppressed MAPK pathway signaling and cell proliferation in BRAF, MEK, and concurrent BRAF/MEK inhibitor-resistant tumor models. ERK inhibitors are currently being evaluated in clinical trials and, in anticipation of the likelihood of clinical resistance, we sought to prospectively model acquired resistance to SCH772984. Our data show that long-term exposure of cells to SCH772984 leads to acquired resistance, attributable to a mutation of glycine to aspartic acid (G(186D)) in the DFG motif of ERK1. Structural and biophysical studies demonstrated specific defects in SCH772984 binding to mutant ERK. Taken together, these studies describe the interaction of SCH772984 with ERK and identify a novel mechanism of ERK inhibitor resistance through mutation of a single residue within the DFG motif. Mol Cancer Ther; 15(4); 548-59. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Ratos
10.
Proc Natl Acad Sci U S A ; 112(29): 9010-5, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26150520

RESUMO

Herpesviruses require a nuclear egress complex (NEC) for efficient transit of nucleocapsids from the nucleus to the cytoplasm. The NEC orchestrates multiple steps during herpesvirus nuclear egress, including disruption of nuclear lamina and particle budding through the inner nuclear membrane. In the important human pathogen human cytomegalovirus (HCMV), this complex consists of nuclear membrane protein UL50, and nucleoplasmic protein UL53, which is recruited to the nuclear membrane through its interaction with UL50. Here, we present an NMR-determined solution-state structure of the murine CMV homolog of UL50 (M50; residues 1-168) with a strikingly intricate protein fold that is matched by no other known protein folds in its entirety. Using NMR methods, we mapped the interaction of M50 with a highly conserved UL53-derived peptide, corresponding to a segment that is required for heterodimerization. The UL53 peptide binding site mapped onto an M50 surface groove, which harbors a large cavity. Point mutations of UL50 residues corresponding to surface residues in the characterized M50 heterodimerization interface substantially decreased UL50-UL53 binding in vitro, eliminated UL50-UL53 colocalization, prevented disruption of nuclear lamina, and halted productive virus replication in HCMV-infected cells. Our results provide detailed structural information on a key protein-protein interaction involved in nuclear egress and suggest that NEC subunit interactions can be an attractive drug target.


Assuntos
Núcleo Celular/metabolismo , Herpesviridae/metabolismo , Subunidades Proteicas/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Calorimetria , Bases de Dados de Proteínas , Descoberta de Drogas , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Muromegalovirus , Mutação/genética , Lâmina Nuclear/metabolismo , Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Soluções , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...