Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37631250

RESUMO

Quercetin (Que) is one of the most studied flavonoids with strong antioxidant properties ascribed to its ability to bind free radicals and inactivate them. However, the low solubility of the compound along with its inadequate absorption after oral administration limit its beneficial effects. Que's complexation with two different cyclodextrin (CD) derivatives (hydroxypropyl-ß-CD and methyl-ß-CD) via the neutralization/lyophilization method has been found to improve its physicochemical properties. Moreover, blends of the lyophilized powders with mannitol/lecithin microparticles (MLMPs) have been proposed as candidates for intranasal (IN) administration after in vitro and ex vivo evaluations. In this context, a comparative pharmacokinetic (PK) study of the IN vs oral administration of Que lyophilized powders and their blends with MLMPs (75:25 w/w) was performed on Wistar rats. The PK parameters estimated by a non-compartmental analysis using the sparse data methodology in Phoenix® 8.3 (Certara, Princeton, NJ, USA) illustrated the effectiveness of IN administration either in brain targeting or in reaching the bloodstream. Significant levels of the compound were achieved at both sites, compared to those after oral delivery which were negligible. These results favor the potential application of the prepared Que nasal powders for systemic and nose-to-brain delivery for the prevention and/or treatment of neuroinflammatory degenerative conditions, such as Parkinson's and Alzheimer's disease.

2.
Int J Pharm ; 607: 121016, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34411652

RESUMO

Quercetin, a flavonoid with possible neuroprotective action has been recently suggested for the early-stage treatment of Alzheimer's disease. The low solubility and extended first pass effect render quercetin unsuitable for oral administration. Alternatively, brain targeting is more feasible with nasal delivery, by-passing, non-invasively, Blood-Brain Barrier and ensuring rapid onset of action. Aiming to increase quercetin's disposition into brain, nasal powders consisting of quercetin-cyclodextrins (methyl-ß-cyclodextrin and hydroxypropyl-ß-cyclodextrin) lyophilizates blended with spray-dried microparticles of mannitol/lecithin were prepared. Quercetin's solubility at 37 °C and pH 7.4 was increased 19-35 times when complexed with cyclodextrins. Blending lyophilizates in various ratios with mannitol/lecithin microparticles, results in powders with improved morphological characteristics as observed by X-ray Diffraction and Scanning Electron Microscopy analysis. In vitro characterization of these powders using Franz cells, revealed rapid dissolution and permeation 17 (methyl-ß-cyclodextrin) to 48 (hydroxypropyl-ß-cyclodextrin) times higher than that of pure quercetin. Ex vivo powders' transport across rabbit nasal mucosa was found more efficient in comparison with the pure Que. The overall better performance of quercetin-hydroxypropyl-ß-cyclodextrin powders is confirmed by ex vivo experiments revealing amount of quercetin permeated ranging from 0.03 ± 0.01 to 0.22 ± 0.05 µg/cm2 for hydroxypropyl-ß-cyclodextrin and 0.022 ± 0.01 to 0.17 ± 0.04 µg/cm2 for methyl-ß-cyclodextrin powders, while the permeation of pure quercetin was negligible.


Assuntos
Ciclodextrinas , Lecitinas , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Encéfalo , Varredura Diferencial de Calorimetria , Manitol , Mucosa Nasal , Pós , Quercetina , Coelhos , Solubilidade , Difração de Raios X
3.
Mol Pharm ; 17(11): 4241-4255, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986435

RESUMO

Quercetin (Que) is a flavonoid associated with high oxygen radical scavenging activity and potential neuroprotective activity against Alzheimer's disease. Que's oral bioavailability is limited by its low water solubility and extended peripheral metabolism; thus, nasal administration may be a promising alternative to achieve effective Que concentrations in the brain. The formation of Que-2-hydroxypropylated-ß-cyclodextrin (Que/HP-ß-CD) complexes was previously found to increase the molecule's solubility and stability in aqueous media. Que-methyl-ß-cyclodextrin (Que/Me-ß-CD) inclusion complexes were prepared, characterized, and compared with the Que/HP-ß-CD complex using biophysical and computational methods (phase solubility, fluorescence and NMR spectroscopy, differential scanning calorimetry (DSC), and molecular dynamics simulations (MDS)) as candidates for the preparation of nose-to-brain Que's delivery systems. DSC thermograms, NMR, fluorescence spectroscopy, and MDS confirmed the inclusion complex formation of Que with both CDs. Differences between the two preparations were observed regarding their thermodynamic stability and inclusion mode governing the details of molecular interactions. Que's solubility in aqueous media at pH 1.2 and 4.5 was similar and linearly increased with both CD concentrations. At pH 6.8, Que's solubility was higher and positively deviated from linearity in the presence of HP-ß-CD more than with Me-ß-CD, possibly revealing the presence of more than one HP-ß-CD molecule involved in the complex. Overall, water solubility of lyophilized Que/Me-ß-CD and Que/HP-ß-CD products was approximately 7-40 times and 14-50 times as high as for pure Que at pH 1.2-6.8. In addition, the proof of concept experiment on ex vivo permeation across rabbit nasal mucosa revealed measurable and similar Que permeability profiles with both CDs and negligible permeation of pure Que. These results are quite encouraging for further ex vivo and in vivo evaluation toward nasal administration and nose-to-brain delivery of Que.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Encéfalo/efeitos dos fármacos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Mucosa Nasal/efeitos dos fármacos , Quercetina/administração & dosagem , Quercetina/química , beta-Ciclodextrinas/química , Administração Intranasal/métodos , Animais , Disponibilidade Biológica , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Quercetina/farmacocinética , Coelhos , Solubilidade , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...