Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 11(6): 2398-407, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15788691

RESUMO

PURPOSE: The epidermal growth factor receptor (EGFR) is a key regulator of growth, differentiation, and survival of epithelial cancers. In a small subset of tumors, the presence of activating mutations within the ATP binding site confers increased susceptibility to gefitinib, a potent tyrosine kinase inhibitor of EGFR. Agents that can inhibit EGFR function through different mechanisms may enhance gefitinib activity in patients lacking these mutations. Mevalonate metabolites play significant roles in the function of the EGFR; therefore, mevalonate pathway inhibitors may potentiate EGFR-targeted therapies. EXPERIMENTAL DESIGN: In this study, we evaluated the effect of lovastatin on EGFR function and on gefitinib activity. Effects on EGFR function were analyzed by Western blot analysis using phosphospecific antibodies to EGFR, AKT, and extracellular signal-regulated kinase. Cytotoxic effects of lovastatin and/or gefitinib were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry. RESULTS: Lovastatin treatment inhibited EGF-induced EGFR autophosphorylation by 24 hours that was reversed by the coadministration of mevalonate. Combining lovastatin and gefitinib treatments showed enhanced inhibition of AKT activation by EGF in SCC9 cells. The combination of 10 mumol/L lovastatin and 10 mumol/L gefitinib treatments showed cooperative cytotoxicity in all 8 squamous cell carcinomas, 4 of 4 non-small cell lung carcinoma and 4 of 4 colon carcinoma cell lines tested. Isobologram and flow cytometric analyses of three representative cell lines with wild-type EGFR ATP binding sites confirmed that this combination was synergistic inducing a potent apoptotic response. CONCLUSIONS: Taken together, these results show that targeting the mevalonate pathway can inhibit EGFR function. They also suggest the potential utility of combining these clinically relevant therapeutic approaches.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Ácido Mevalônico/química , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinibe , Humanos , Lovastatina/administração & dosagem , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ácido Mevalônico/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Quinazolinas/administração & dosagem , Células Tumorais Cultivadas
2.
J Cancer Res Clin Oncol ; 129(11): 631-41, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12942316

RESUMO

PURPOSE: Mevalonate metabolites are vital for a variety of key cellular functions with the biosynthetic products including cholesterol and farnesyl and geranylgeranyl isoprenoids. Inhibition of this pathway using lovastatin induces a potent apoptotic response in a specific subset of human tumor-derived cell lines, including head and neck squamous cell carcinomas (HNSCC). In this study, we evaluated the potential of a number of chemotherapeutics that demonstrate activity in HNSCC, including an inhibitor of epidermal growth factor receptor (EGFR) to potentiate the cytotoxic effects of lovastatin. METHODS: We evaluated the cytotoxic effects of combining a variety of chemotherapeutics with lovastatin using the MTT assay and flow cytometry. The MCF-7 lovastatin-resistant breast adenocarcinoma cell line and the lovastatin-sensitive HNSCC cell lines SCC9 and SCC25 were tested. Expression levels of EGFR and ligand activated EGFR following lovastatin treatment were analyzed by Western blotting. RESULTS: Pretreatment or concomitant treatment of 10 microM lovastatin did not significantly augment the effects of a variety of chemotherapeutic agents tested in these cell lines. Co-administration with actinomycin D or cycloheximide, drugs that inhibit RNA and protein synthesis, respectively, inhibited lovastatin-induced apoptosis in these cell lines. This suggests a requirement for the cellular functions disrupted by these chemotherapeutic agents in lovastatin-induced apoptosis of HNSCC cells. In contrast to the chemotherapeutics analyzed, the AG1478 tyrosine kinase inhibitor of the EGFR demonstrated additive cytotoxic effects in combination with lovastatin in HNSCC cells. Mevalonate metabolites may regulate EGFR function, suggesting that lovastatin may inhibit the activity of this receptor. Indeed, lovastatin treatment inhibited EGF-induced autophosphorylation of the EGFR in the SCC9 and SCC25 cell lines. Pretreatment of SCC9 and SCC25 cell lines for 24 h with 10 microM lovastatin, conditions that demonstrated significant inhibition of EGF-induced EGFR autophosphorylation, induced significant additive effects in combination with AG1478. CONCLUSION: These results demonstrated the ability of EGFR pathway inhibitors to potentiate lovastatin-induced apoptosis and suggested that lovastatin may target the EGFR pathway in HNSCC cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Cicloeximida/uso terapêutico , Dactinomicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA