Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230537

RESUMO

Hyaluronic acid (HA) is highly elevated in breast cancers compared to normal breast tissue and is associated with increased tumor aggressiveness and poor prognosis. HA interacts with cell-trafficking CD44 receptors to promote tumor cell migration and proliferation and regulates both pro- and anti-inflammatory cytokine production through tumor-associated macrophages. The highly negative charge of HA enables its uptake of vast amounts of water that greatly increases the tumor interstitial fluidic pressure, which, combined with the presence of other extracellular matrix components such as collagen, results in tumor stroma with abnormal vasculature, hypoxia, and increased drug resistance. Thus, the degradation of HA in breast cancer may attenuate growth and improve permeability to anticancer agents. Previous methods to deplete tumor HA have resulted in significant off-tumor effects due to the systemic use of mammalian hyaluronidases. To overcome this, we developed a hyaluronidase-secreting Salmonella typhimurium (YS-HAse) that specifically and preferentially colonizes tumors to deplete HA. We show that the systemic administration of YS-HAse in immunocompetent murine models of breast cancer enhances tumor perfusion, controls tumor growth, and restructures the tumor immune contexture. These studies highlight the utility of YS-HAse as a novel microbial-based therapeutic that may also be combined with existing therapeutic approaches.

2.
Cancers (Basel) ; 15(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36612115

RESUMO

Cancer cells accumulate epigenetic modifications that allow escape from intrinsic and extrinsic surveillance mechanisms. In the case of acute myeloid leukemias (AML) and myelodysplastic syndromes, agents that disrupt chromatin structure, namely hypomethylating agents (HMAs), have shown tremendous promise as an alternate, milder treatment option for older, clinically non-fit patients. HMAs reprogram the epigenetic landscape in tumor cells through the reversal of DNA hypermethylation. Therapeutic effects resulting from these epigenetic changes are incredibly effective, sometimes resulting in complete remissions, but are frequently lost due to primary or acquired resistance. In this study, we describe syngeneic murine leukemias that are responsive to the HMA 5-azacytidine (5-Aza), as determined by augmented expression of a transduced luciferase reporter. We also found that 5-Aza treatment re-established immune-related transcript expression, suppressed leukemic burden and extended survival in leukemia-challenged mice. The effects of 5-Aza treatment were short-lived, and analysis of the immune microenvironment reveals possible mechanisms of resistance, such as simultaneous increase in immune checkpoint protein expression. This represents a model system that is highly responsive to HMAs and recapitulates major therapeutic outcomes observed in human leukemia (relapse) and may serve as a pre-clinical tool for studying acquired resistance and novel treatment combinations.

3.
Cancers (Basel) ; 13(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34298778

RESUMO

Therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) can be attributed, in part, to a dense extracellular matrix containing excessive collagen deposition. Here, we describe a novel Salmonella typhimurium (ST) vector expressing the bacterial collagenase Streptomyces omiyaensis trypsin (SOT), a serine protease known to hydrolyze collagens I and IV, which are predominantly found in PDAC. Utilizing aggressive models of PDAC, we show that ST-SOT selectively degrades intratumoral collagen leading to decreases in immunosuppressive subsets, tumor proliferation and viability. Ultimately, we found that ST-SOT treatment significantly modifies the intratumoral immune landscape to generate a microenvironment that may be more conducive to immunotherapy.

4.
Biomedicines ; 8(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339195

RESUMO

Therapeutic options for non-small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor-associated CD8+ T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub-therapeutic doses of our Salmonella typhimurium-based therapy targeting the suppressive molecule indoleamine 2,3-dioxygenase (shIDO-ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO-ST treatment with anti-PD-1/CTLA-4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8+ and CD4+ T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO-ST could be used to create a more conducive tumor microenvironment for improving responses to ICB.

5.
Nat Commun ; 11(1): 6121, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257686

RESUMO

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We demonstrate the construction of a vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we use this vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. We show that mice immunized with these sMVA vectors develop robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.


Assuntos
Vacinas contra COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Sintéticas/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Vetores Genéticos/imunologia , Humanos , Imunidade Celular , Camundongos , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia , Vacinas Atenuadas/imunologia , Vaccinia virus/imunologia , Vacinas Virais/imunologia
6.
Oncotarget ; 11(38): 3486-3488, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33014284

RESUMO

Pancreatic cancer is considered one of the most lethal cancers in the US. It contributes to an estimated 47,000 deaths annually and is predicted to surpass prostate, breast and colorectal cancers as the leading cause of cancer-related death. Although major advancements in cancer treatment have improved outcomes for many cancer types, survival rate for pancreatic cancer has not improved in nearly four decades despite tremendous effort. One attribute of pancreatic cancer that is considered a major barrier to effective treatment is the formation of fibrotic tissue around tumor cells known as desmoplasia. A number of promising approaches have been developed to deplete fibrotic components in pancreatic tumors to enhance drug delivery, some of which have been tested in clinical trials of advanced, unresectable pancreatic cancer. Here, we discuss previous efforts, shortcomings and new considerations for developing more effective agents to eliminate desmoplasia.

7.
bioRxiv ; 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32637957

RESUMO

Modified Vaccinia Ankara (MVA) is a highly attenuated poxvirus vector that is widely used to develop vaccines for infectious diseases and cancer. We developed a novel vaccine platform based on a unique three-plasmid system to efficiently generate recombinant MVA vectors from chemically synthesized DNA. In response to the ongoing global pandemic caused by SARS coronavirus-2 (SARS-CoV-2), we used this novel vaccine platform to rapidly produce fully synthetic MVA (sMVA) vectors co-expressing SARS-CoV-2 spike and nucleocapsid antigens, two immunodominant antigens implicated in protective immunity. Mice immunized with these sMVA vectors developed robust SARS-CoV-2 antigen-specific humoral and cellular immune responses, including potent neutralizing antibodies. These results demonstrate the potential of a novel vaccine platform based on synthetic DNA to efficiently generate recombinant MVA vectors and to rapidly develop a multi-antigenic poxvirus-based SARS-CoV-2 vaccine candidate.

8.
Front Immunol ; 11: 538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296439

RESUMO

Tumors evolve a variety of mechanisms to escape immune detection while expressing tumor-promoting molecules that can be immunogenic. Here, we show that transposable elements (TE) and gene encoded, tumor-associated antigens (TAA), which can be both highly immunogenic and tumor-promoting, are significantly upregulated during the transition from pre-malignancy to malignancy in an inducible model of pancreatic ductal adenocarcinoma (PDAC). Coincident with the increased presence of TEs and TAAs was the downregulation of gene transcripts associated with antigen presentation, T cell recruitment and intrinsic anti-viral responses, suggesting a unique strategy employed by PDAC to possibly augment tumorigenesis while escaping detection by the immune system. In vitro treatment of mouse and human PDAC cell lines with the DNA methyltransferase inhibitor 5-azacytidine (Aza) resulted in augmented expression of transcripts for antigen presentation machinery and T cell chemokines. When immunocompetent mice implanted with PDAC were therapeutically treated with Aza, we observed significant tumor regression that was not observed in immunocompromised mice, implicating anti-tumor immunity as the principal mechanism of tumor growth control. Analysis of PDAC tumors, immediately following Aza treatment in immunocompetent mice, revealed a significantly greater infiltration of T cells and various innate immune subsets compared to control treatment, suggesting that Aza treatment enhances tumor immunogenicity. Thus, augmenting antigen presentation and T cell chemokine expression using DNA methyltransferase inhibitors could be leveraged to potentiate adaptive anti-tumor immune responses against PDAC.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Carcinoma Ductal Pancreático/imunologia , Neoplasias Pancreáticas/imunologia , Animais , Antígenos de Neoplasias , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
9.
Cancer Gene Ther ; 27(3-4): 235-245, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30824815

RESUMO

Patients with colon cancer remain largely refractory to current immunotherapeutic strategies. This is, in part, due to the overexpression of the immune checkpoint protein indoleamine 2,3-dioxygenase 1 (IDO). IDO is an important enzyme contributing to tumor-mediated immunosuppression and also correlates with poor prognosis in colon cancer patients. The aim of this study was to assess the therapeutic efficacy of attenuated Salmonella typhimurium delivering an shRNA plasmid targeting IDO (shIDO-ST) in two mouse models of colorectal cancer. In vitro, the CT26 and MC38 murine colon cancer cell lines were shown to upregulate IDO expression following stimulation with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Transfection of both cell lines with shIDO plasmid reduced IDO protein expression and function. In vivo, shIDO-ST treatment significantly delayed CT26 and MC38 tumor progression compared to mice treated with scrambled shRNA control (shScr-ST) or the clinically tested IDO inhibitor epacadostat. Increased tumor infiltration of neutrophils was found to be the primary immune cell population associated with shIDO-ST treatment, suggesting robust activation of innate immunity. Although increased tumor expression of IDO is associated with resistance to antibody therapy against programed cell death-1 (anti-PD1), co-administration of anti-PD1 with shIDO-ST did not provide additional tumor growth control in either model of colorectal cancer. Altogether, we demonstrate that treatment with shIDO-ST markedly delays tumor growth in two immunocompetent colorectal mouse models and this appears to be a superior therapeutic strategy compared to epacadostat or blocking anti-PD1 antibody therapy in colon cancer.


Assuntos
Vacinas Anticâncer/administração & dosagem , Neoplasias Colorretais/terapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/imunologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral/transplante , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Oximas/farmacologia , Oximas/uso terapêutico , Plasmídeos/genética , RNA Interferente Pequeno/genética , Vacinas contra Salmonella/genética , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Evasão Tumoral , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
10.
Mol Cancer Ther ; 19(2): 706-716, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31694889

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), the extracellular matrix (ECM) surrounding cancer cells forms a barrier that often limits the ability of chemotherapeutic drugs and cytotoxic immune subsets to penetrate and eliminate tumors. The dense stromal matrix protecting cancer cells, also known as desmoplasia, results from the overproduction of major ECM components such as collagens and hyaluronic acid (HA). Although candidate drugs targeting ECM components have shown promise in increasing penetration of chemotherapeutic agents, severe adverse effects associated with systemic depletion of ECM in peripheral healthy tissues limits their use at higher, more effective doses. Currently, few strategies exist that preferentially degrade ECM in tumor tissue over healthy tissues. In light of this, we have developed an attenuated, tumor-targeting Salmonella typhimurium (ST) expressing functional bacterial hyaluronidase (bHs-ST), capable of degrading human HA deposited within PDAC tumors. Our data show that bHs-ST (i) targets and colonizes orthotopic human PDAC tumors following systemic administration and (ii) is efficiently induced in vivo to deplete tumor-derived HA, which in turn (iii) significantly increases diffusion of Salmonella typhimurium within desmoplastic tumors. BHs-ST represents a promising new tumor ECM-targeting strategy that may be instrumental in minimizing off-tumor toxicity while maximizing drug delivery into highly desmoplastic tumors.


Assuntos
Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/terapia , Ácido Hialurônico/metabolismo , Salmonella/metabolismo , Animais , Humanos , Camundongos
11.
J Clin Med ; 8(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635338

RESUMO

Oncogenic (mutant) Ras protein Kirsten rat sarcoma viral oncogene homolog (KRAS) promotes uncontrolled proliferation, altered metabolism, and loss of genome integrity in a cell-intrinsic manner. Here, we demonstrate that CD4+ T cells when incubated with tumor-derived exosomes from mutant (MT) KRAS non-small-cell lung cancer (NSCLC) cells, patient sera, or a mouse xenograft model, induce phenotypic conversion to FOXP3+ Treg-like cells that are immune-suppressive. Furthermore, transfecting T cells with MT KRAS cDNA alone induced phenotypic switching and mathematical modeling supported this conclusion. Single-cell sequencing identified the interferon pathway as the mechanism underlying the phenotypic switch. These observations highlight a novel cytokine-independent, cell-extrinsic role for KRAS in T cell phenotypic switching. Thus, targeting this new class of Tregs represents a unique therapeutic approach for NSCLC. Since KRAS is the most frequently mutated oncogene in a wide variety of cancers, the findings of this investigation are likely to be of broad interest and have a large scientific impact.

12.
PLoS One ; 14(9): e0221810, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490946

RESUMO

The five-year survival rate of patients diagnosed with advanced pancreatic ductal adenocarcinoma (PDAC) has remained static at <5% despite decades of research. With the exception of erlotinib, clinical trials have failed to demonstrate the benefit of any targeted therapy for PDAC despite promising results in preclinical animal studies. The development of more refined mouse models of PDAC which recapitulate the carcinogenic progression from non-neoplastic, adult exocrine subsets of pancreatic cells to invasive carcinoma in humans are needed to facilitate the accurate translation of therapies to the clinic. To study acinar cell-derived PDAC initiation, we developed a genetically engineered mouse model of PDAC, called KPT, utilizing a tamoxifen-inducible Cre recombinase/estrogen receptor (ESR1) fusion protein knocked into the Ptf1a locus to activate the expression of oncogenic KrasG12D and Trp53R270H alleles in mature pancreatic acinar cells. Oncogene-expressing acinar cells underwent acinar-to-ductal metaplasia, and formed pancreatic intraepithelial neoplasia lesions following the induction of oncogene expression. After a defined latency period, oncogene-expressing acinar cells initiated the formation of highly differentiated and fibrotic tumors, which metastasized to the lungs and liver. Whole-transcriptome analysis of microdissected regions of acinar-to-ductal metaplasia and histological validation experiments demonstrated that regions of acinar-to-ductal metaplasia are characterized by the deposition of the extracellular matrix component hyaluronan. These results indicate that acinar cells expressing KrasG12D and Trp53R270H can initiate PDAC development in young adult mice and implicate hyaluronan deposition in the formation of the earliest characterized PDAC precursor lesions (and the progression of pancreatic cancer). Further studies are necessary to provide a comprehensive characterization of PDAC progression and treatment response in KPT mice and to investigate whether the KPT model could be used as a tool to study translational aspects of acinar cell-derived PDAC tumorigenesis.


Assuntos
Células Acinares/patologia , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Oncogenes/genética , Pâncreas/patologia , Alelos , Animais , Progressão da Doença , Perfilação da Expressão Gênica , Metaplasia/genética , Metaplasia/patologia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética
13.
Semin Cancer Biol ; 59: 236-250, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31404607

RESUMO

Cutaneous melanoma is the most common skin cancer with an incidence that has been rapidly increasing in the past decades. Melanomas are among the most immunogenic tumors and, as such, have the greatest potential to respond favorably to immunotherapy. However, like many cancers, melanomas acquire various suppressive mechanisms, which generally act in concert, to escape innate and adaptive immune detection and destruction. Intense research into the cellular and molecular events associated with melanomagenesis, which ultimately lead to immune suppression, has resulted in the discovery of new therapeutic targets and synergistic combinations of immunotherapy, targeted therapy and chemotherapy. Tremendous effort to determine efficacy of single and combination therapies in pre-clinical and clinical phase I-III trials has led to FDA-approval of several immunotherapeutic agents that could potentially be beneficial for aggressive, highly refractory, advanced and metastatic melanomas. The increasing availability of approved combination therapies for melanoma and more rapid assessment of patient tumors has increased the feasibility of personalized treatment to overcome patient and tumor heterogeneity and to achieve greater clinical benefit. Here, we review the evolution of the immune system during melanomagenesis, mechanisms exploited by melanoma to suppress anti-tumor immunity and methods that have been developed to restore immunity. We emphasize that an effective therapeutic strategy will require coordinate activation of tumor-specific immunity as well as increased recognition and accessibility of melanoma cells in primary tumors and distal metastases. This review integrates available knowledge on melanoma-specific immunity, molecular signaling pathways and molecular targeting strategies that could be utilized to envision therapeutics with broader application and greater efficacy for early stage and advanced metastatic melanoma.


Assuntos
Comunicação Celular , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Melanoma/etiologia , Melanoma/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Biomarcadores , Citocinas/metabolismo , Metabolismo Energético , Humanos , Imunidade , Melanoma/patologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Microambiente Tumoral/imunologia
14.
J Surg Oncol ; 116(1): 75-82, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28420039

RESUMO

Despite intensive research into novel treatment strategies for cancer, it remains the second most common cause of death in industrialized populations. Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with dismal prognosis. Currently, surgical resection offers the best chance for extended survival, yet recurrence remains high and is associated with poor outcome. Systemic treatment has evolved from non-specific, cytotoxic chemotherapy to the use of cancer-targeting agents, profoundly changing treatment approaches in the metastatic and adjuvant settings. One promising approach, highlighted in this review, uses the inherent capacity of Salmonella to colonize and eliminate solid tumors.


Assuntos
Terapia Biológica/métodos , Carcinoma Ductal Pancreático/terapia , Imunoterapia/métodos , Salmonella typhimurium , Animais , Carcinoma Ductal Pancreático/imunologia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Salmonella typhimurium/genética , Transformação Bacteriana
15.
Oncoimmunology ; 5(6): e1160184, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27471630

RESUMO

Despite the clinical success of anti-PD1 antibody (α-PD1) therapy, the immune mechanisms contributing to the antineoplastic response remain unclear. Here, we describe novel aspects of the immune response involved in α-PD1-induced antitumor effects using an orthotopic Kras (G12D)/p53(R172H)/Pdx1-Cre (KPC) model of pancreatic ductal adenocarcinoma (PDA). We found that positive therapeutic outcome involved both the innate and adaptive arms of the immune system. Adoptive transfer of total splenocytes after short-term (3 d) but not long-term (28 d) PD1 blockade significantly extended survival of non-treated tumor-bearing recipient mice. This protective effect appeared to be mostly mediated by T cells, as adoptive transfer of purified natural killer (NK) cells and/or granulocyte receptor 1 (Gr1)(+) cells or splenocytes depleted of Gr1(+) cells and NK cells did not exhibit transferrable antitumor activity following short-term PD1 blockade. Nevertheless, splenic and tumor-derived CD11b(+)Gr1(+) cells and NK cells showed significant persistence of α-PD1 bound to these cells in the treated primary recipient mice. We observed that short-term inhibition of PD1 signaling modulated the profiles of multifunctional cytokines in the tumor immune-infiltrate, including downregulation of vascular endothelial growth factor A (VEGF-A). Altogether, the data suggest that systemic blockade of PD1 results in rapid modulation of antitumor immunity that differs in the tumor microenvironment (TME) when compared to the spleen. These results demonstrate a key role for early immune-mediated events in controlling tumor progression in response to α-PD1 treatment and warrant further investigation into the mechanisms governing responses to the therapy at the innate-adaptive immune interface.

17.
PLoS One ; 11(2): e0148139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26829221

RESUMO

Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs) can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261) tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc) that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioma/tratamento farmacológico , Imunoterapia , Nanotubos de Carbono/química , Oligodesoxirribonucleotídeos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Glioma/patologia , Inflamação/patologia , Lipídeos/química , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Polietilenoglicóis/química , Baço/patologia , Temozolomida , Resultado do Tratamento
18.
Cancer Immunol Res ; 3(9): 1096-107, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26134178

RESUMO

Bacterial-based therapies are emerging as effective cancer treatments and hold promise for refractory neoplasms, such as pancreatic ductal adenocarcinoma (PDAC), which has not shown significant improvement in therapy for more than 25 years. Using a novel combination of shIDO-ST, a Salmonella-based therapy targeting the immunosuppressive molecule indoleamine 2,3-dioxygenase (IDO), with an enzyme, PEGPH20, which depletes extracellular matrix hyaluronan, we observed extended survival with frequent total regression of autochthonous and orthotopic PDAC tumors. This observation was associated with migration and accumulation of activated polymorphonuclear neutrophils (PMN) from spleens into tumors, which was not seen using a scrambled control (shScr-ST). Purified splenic PMNs from PEGPH20/shIDO-ST-treated mice exhibited significant IDO knockdown and were able to kill tumor targets ex vivo through mechanisms involving FasL and serine proteases. In addition, CD8(+) T cells were observed to contribute to late control of pancreatic tumors. Collectively, our data demonstrate that entry of shIDO-ST and PMNs into otherwise impermeable desmoplastic tumors is facilitated by PEGPH20-mediated HA removal, further highlighting an important component of effective treatment for PDAC.


Assuntos
Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Moléculas de Adesão Celular/uso terapêutico , Ácido Hialurônico/deficiência , Hialuronoglucosaminidase/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias Pancreáticas/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Terapia Combinada , Técnicas de Silenciamento de Genes/métodos , Terapia Genética/métodos , Ácido Hialurônico/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Transplante de Neoplasias , Neutrófilos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Recombinantes/uso terapêutico , Neoplasias Pancreáticas
19.
Cancer Res ; 74(21): 6260-70, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25213323

RESUMO

Vaccines explored for cancer therapy have been based generally on injectable vector systems used to control foreign infectious pathogens, to which the immune system evolved to respond naturally. However, these vectors may not be effective at presenting tumor-associated antigens (TAA) to the immune system in a manner that is sufficient to engender antitumor responses. We addressed this issue with a novel orally administered Salmonella-based vector that exploits a type III secretion system to deliver selected TAA in the cytosol of professional antigen-presenting cells in situ. A systematic comparison of candidate genes from the Salmonella Pathogenicity Island 2 (SPI2) locus was conducted in the vaccine design, using model antigens and a codon-optimized form of the human TAA survivin (coSVN), an oncoprotein that is overexpressed in most human cancers. In a screen of 20 SPI2 promoter:effector combinations, a PsifB::sseJ combination exhibited maximal potency for antigen translocation into the APC cytosol, presentation to CD8 T cells, and murine immunogenicity. In the CT26 mouse model of colon carcinoma, therapeutic vaccination with a lead PsifB::sseJ-coSVN construct (p8032) produced CXCR3-dependent infiltration of tumors by CD8 T cells, reversed the CD8:Treg ratio at the tumor site, and triggered potent antitumor activity. Vaccine immunogenicity and antitumor potency were enhanced by coadministration of the natural killer T-cell ligand 7DW8-5, which heightened the production of IL12 and IFNγ. Furthermore, combined treatment with p8032 and 7DW8-5 resulted in complete tumor regression in A20 lymphoma-bearing mice, where protective memory was demonstrated. Taken together, our results demonstrate how antigen delivery using an oral Salmonella vector can provide an effective platform for the development of cancer vaccines.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Vacinas Anticâncer/administração & dosagem , Neoplasias/tratamento farmacológico , Salmonella typhimurium/imunologia , Vacinas Atenuadas/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Proteínas de Bactérias/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Humanos , Proteínas de Membrana/genética , Camundongos , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Salmonella typhimurium/genética , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...