Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Blood Med ; 15: 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274703

RESUMO

Introduction: Gaucher disease is a rare autosomal recessive lysosomal storage disease with unknown prevalence in Africa and no record of the disease exists in Uganda. Case Presentation: We report a case of a 12-year-old female, the last born of 6 from a family with no known familial disease who presented with non-neuronopathic Gaucher disease and superimposed malaria. The disease was initially misdiagnosed as hyperreactive malarial splenomegaly but was subsequently confirmed by examination of the bone marrow smear and core. The disease was managed supportively and splenectomy was done due to worsening hematological parameters. She currently takes morphine for bone pains in addition to physiotherapy. Conclusion: Always HMS is a common complication in malaria endemic areas, other causes of hepatosplenomegaly need to be excluded before the diagnosis is made. Diagnosis and treatment of patients with rare conditions like GD is still a challenge in developing countries. Although splenectomy is indicated in GD, it should only be done when it is absolutely necessary.

2.
Sci Adv ; 8(41): eabp8677, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240267

RESUMO

Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.

3.
Nat Commun ; 12(1): 3459, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103503

RESUMO

Membrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.

4.
Elife ; 102021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114563

RESUMO

During HIV-1 particle formation, the requisite plasma membrane curvature is thought to be solely driven by the retroviral Gag protein. Here, we reveal that the cellular I-BAR protein IRSp53 is required for the progression of HIV-1 membrane curvature to complete particle assembly. siRNA-mediated knockdown of IRSp53 gene expression induces a decrease in viral particle production and a viral bud arrest at half completion. Single-molecule localization microscopy at the cell plasma membrane shows a preferential localization of IRSp53 around HIV-1 Gag assembly sites. In addition, we observe the presence of IRSp53 in purified HIV-1 particles. Finally, HIV-1 Gag protein preferentially localizes to curved membranes induced by IRSp53 I-BAR domain on giant unilamellar vesicles. Overall, our data reveal a strong interplay between IRSp53 I-BAR and Gag at membranes during virus assembly. This highlights IRSp53 as a crucial host factor in HIV-1 membrane curvature and its requirement for full HIV-1 particle assembly.


Assuntos
HIV-1/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vírion/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Membrana Celular/metabolismo , Células HEK293 , HIV-1/fisiologia , Humanos , Células Jurkat , Imagem Individual de Molécula/métodos
5.
Soft Matter ; 17(16): 4254-4265, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870384

RESUMO

Protein enrichment at specific membrane locations in cells is crucial for many cellular functions. It is well-recognized that the ability of some proteins to sense membrane curvature contributes partly to their enrichment in highly curved cellular membranes. In the past, different theoretical models have been developed to reveal the physical mechanisms underlying curvature-driven protein sorting. This review aims to provide a detailed discussion of the two continuous models that are based on the Helfrich elasticity energy, (1) the spontaneous curvature model and (2) the curvature mismatch model. These two models are commonly applied to describe experimental observations of protein sorting. We discuss how they can be used to explain the curvature-induced sorting data of two BAR proteins, amphiphysin and centaurin. We further discuss how membrane rigidity, and consequently the membrane curvature generated by BAR proteins, could influence protein organization on the curved membranes. Finally, we address future directions in extending these models to describe some cellular phenomena involving protein sorting.


Assuntos
Membrana Celular , Membrana Celular/metabolismo , Transporte Proteico
6.
J Biol Chem ; 295(45): 15366-15375, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32868296

RESUMO

Heterodimeric capping protein (CP) binds the rapidly growing barbed ends of actin filaments and prevents the addition (or loss) of subunits. Capping activity is generally considered to be essential for actin-based motility induced by Arp2/3 complex nucleation. By stopping barbed end growth, CP favors nucleation of daughter filaments at the functionalized surface where the Arp2/3 complex is activated, thus creating polarized network growth, which is necessary for movement. However, here using an in vitro assay where Arp2/3 complex-based actin polymerization is induced on bead surfaces in the absence of CP, we produce robust polarized actin growth and motility. This is achieved either by adding the actin polymerase Ena/VASP or by boosting Arp2/3 complex activity at the surface. Another actin polymerase, the formin FMNL2, cannot substitute for CP, showing that polymerase activity alone is not enough to override the need for CP. Interfering with the polymerase activity of Ena/VASP, its surface recruitment or its bundling activity all reduce Ena/VASP's ability to maintain polarized network growth in the absence of CP. Taken together, our findings show that CP is dispensable for polarized actin growth and motility in situations where surface-directed polymerization is favored by whatever means over the growth of barbed ends in the network.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Forminas/metabolismo , Animais , Camundongos , Polimerização , Coelhos , Suínos
7.
Front Chem ; 7: 1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30778383

RESUMO

Biosensors based on plasmonic nanostructures are widely used in various applications and benefit from numerous operational advantages. One type of application where nanostructured sensors provide unique value in comparison with, for instance, conventional surface plasmon resonance, is investigations of the influence of nanoscale geometry on biomolecular binding events. In this study, we show that plasmonic "nanowells" conformally coated with a continuous lipid bilayer can be used to detect the preferential binding of the insulin receptor tyrosine kinase substrate protein (IRSp53) I-BAR domain to regions of negative surface curvature, i.e., the interior of the nanowells. Two different sensor architectures with and without an additional niobium oxide layer are compared for this purpose. In both cases, curvature preferential binding of IRSp53 (at around 0.025 nm-1 and higher) can be detected qualitatively. The high refractive index niobium oxide influences the near field distribution and makes the signature for bilayer formation less clear, but the contrast for accumulation at regions of negative curvature is slightly higher. This work shows the first example of analyzing preferential binding of an average-sized and biologically important protein to negative membrane curvature in a label-free manner and in real-time, illustrating a unique application for nanoplasmonic sensors.

8.
Proc Natl Acad Sci U S A ; 115(45): 11537-11542, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348801

RESUMO

During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion in Caenorhabditis elegans, we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption in C. elegans.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Membrana Basal/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mecanotransdução Celular , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/genética , Animais , Membrana Basal/citologia , Fenômenos Biomecânicos , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Forminas , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Laminina/genética , Laminina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Morfogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polimerização , Proteína Vermelha Fluorescente
9.
Elife ; 72018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30234483

RESUMO

One challenge in cell biology is to decipher the biophysical mechanisms governing protein enrichment on curved membranes and the resulting membrane deformation. The ERM protein ezrin is abundant and associated with cellular membranes that are flat, positively or negatively curved. Using in vitro and cell biology approaches, we assess mechanisms of ezrin's enrichment on curved membranes. We evidence that wild-type ezrin (ezrinWT) and its phosphomimetic mutant T567D (ezrinTD) do not deform membranes but self-assemble anti-parallelly, zipping adjacent membranes. EzrinTD's specific conformation reduces intermolecular interactions, allows binding to actin filaments, which reduces membrane tethering, and promotes ezrin binding to positively-curved membranes. While neither ezrinTD nor ezrinWT senses negative curvature alone, we demonstrate that interacting with curvature-sensing I-BAR-domain proteins facilitates ezrin enrichment in negatively-curved membrane protrusions. Overall, our work demonstrates that ezrin can tether membranes, or be targeted to curved membranes, depending on conformations and interactions with actin and curvature-sensing binding partners.


Assuntos
Membrana Celular/química , Proteínas do Citoesqueleto/química , Proteínas Mutantes/química , Conformação Proteica , Actinas/química , Actinas/genética , Membrana Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Ligação Proteica/genética , Domínios Proteicos/genética
10.
Biophys J ; 113(5): 1072-1079, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877490

RESUMO

Actin is one of the main components of the architecture of cells. Actin filaments form different polymer networks with versatile mechanical properties that depend on their spatial organization and the presence of cross-linkers. Here, we investigate the mechanical properties of actin bundles in the absence of cross-linkers. Bundles are polymerized from the surface of mDia1-coated latex beads, and deformed by manipulating both ends through attached beads held by optical tweezers, allowing us to record the applied force. Bundle properties are strikingly different from the ones of a homogeneous isotropic beam. Successive compression and extension leads to a decrease in the buckling force that we attribute to the bundle remaining slightly curved after the first deformation. Furthermore, we find that the bundle is solid, and stiff to bending, along the long axis, whereas it has a liquid and viscous behavior in the transverse direction. Interpretation of the force curves using a Maxwell visco-elastic model allows us to extract the bundle mechanical parameters and confirms that the bundle is composed of weakly coupled filaments. At short times, the bundle behaves as an elastic material, whereas at long times, filaments flow in the longitudinal direction, leading to bundle restructuring. Deviations from the model reveal a complex adaptive rheological behavior of bundles. Indeed, when allowed to anneal between phases of compression and extension, the bundle reinforces. Moreover, we find that the characteristic visco-elastic time is inversely proportional to the compression speed. Actin bundles are therefore not simple force transmitters, but instead, complex mechano-transducers that adjust their mechanics to external stimulation. In cells, where actin bundles are mechanical sensors, this property could contribute to their adaptability.


Assuntos
Actinas/metabolismo , Actinas/química , Adaptação Fisiológica , Fenômenos Biomecânicos , Elasticidade , Modelos Moleculares , Pinças Ópticas , Reologia , Estresse Mecânico , Viscosidade
11.
Adv Mater ; 29(42)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28960485

RESUMO

Magnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine.


Assuntos
Ferritinas/química , Citosol , Humanos , Magnetismo , Nanopartículas , Organelas
12.
Biophys J ; 109(12): 2471-2479, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682806

RESUMO

Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.


Assuntos
Actinas/metabolismo , Materiais Biomiméticos/metabolismo , Lipossomos/metabolismo , Fenômenos Mecânicos , Fenômenos Biomecânicos , Cápsulas , Elasticidade , Hidrodinâmica , Viscosidade
13.
Nat Commun ; 6: 8529, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469246

RESUMO

BAR domain proteins contribute to membrane deformation in diverse cellular processes. The inverted-BAR (I-BAR) protein IRSp53, for instance, is found on the inner leaflet of the tubular membrane of filopodia; however its role in the formation of these structures is incompletely understood. Here we develop an original assay in which proteins are encapsulated in giant unilamellar vesicles connected to membrane nanotubes. Our results demonstrate that I-BAR dimers sense negative membrane curvature. Experiment and theory reveal that the I-BAR displays a non-monotonic sorting with curvature, and expands the tube at high imposed tension while constricting it at low tension. Strikingly, at low protein density and tension, protein-rich domains appear along the tube. This peculiar behaviour is due to the shallow intrinsic curvature of I-BAR dimers. It allows constriction of weakly curved membranes coupled to local protein enrichment at biologically relevant conditions. This might explain how IRSp53 contributes in vivo to the initiation of filopodia.


Assuntos
Membrana Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular Tumoral , Humanos , Pseudópodes/fisiologia
14.
Nat Commun ; 6: 6249, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25695735

RESUMO

In endocytosis, scaffolding is one of the mechanisms to create membrane curvature by moulding the membrane into the spherical shape of the clathrin cage. However, the impact of membrane elastic parameters on the assembly and shape of clathrin lattices has never been experimentally evaluated. Here, we show that membrane tension opposes clathrin polymerization. We reconstitute clathrin budding in vitro with giant unilamellar vesicles (GUVs), purified adaptors and clathrin. By changing the osmotic conditions, we find that clathrin coats cause extensive budding of GUVs under low membrane tension while polymerizing into shallow pits under moderate tension. High tension fully inhibits polymerization. Theoretically, we predict the tension values for which transitions between different clathrin coat shapes occur. We measure the changes in membrane tension during clathrin polymerization, and use our theoretical framework to estimate the polymerization energy from these data. Our results show that membrane tension controls clathrin-mediated budding by varying the membrane budding energy.


Assuntos
Clatrina/química , Invaginações Revestidas da Membrana Celular/química , Elasticidade , Polimerização , Animais , Invaginações Revestidas da Membrana Celular/ultraestrutura , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Osmose , Sus scrofa , Termodinâmica , Lipossomas Unilamelares/metabolismo
15.
Mol Biol Cell ; 26(1): 55-65, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355952

RESUMO

The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex-based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.


Assuntos
Citoesqueleto de Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/química , Actinas/química , Proteínas de Caenorhabditis elegans/química , Proteínas de Ligação a DNA/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/química , Animais , Caenorhabditis elegans , Movimento Celular , Desenvolvimento Embrionário , Humanos , Profilinas/química , Pseudópodes
16.
Philos Trans R Soc Lond B Biol Sci ; 368(1629): 20130005, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24062578

RESUMO

Cells use complex biochemical pathways to drive shape changes for polarization and movement. One of these pathways is the self-assembly of actin filaments and myosin motors that together produce the forces and tensions that drive cell shape changes. Whereas the role of actin and myosin motors in cell polarization is clear, the exact mechanism of how the cortex, a thin shell of actin that is underneath the plasma membrane, can drive cell shape changes is still an open question. Here, we address this issue using biomimetic systems: the actin cortex is reconstituted on liposome membranes, in an 'outside geometry'. The actin shell is either grown from an activator of actin polymerization immobilized at the membrane by a biotin-streptavidin link, or built by simple adsorption of biotinylated actin filaments to the membrane, in the presence or absence of myosin motors. We show that tension in the actin network can be induced either by active actin polymerization on the membrane via the Arp2/3 complex or by myosin II filament pulling activity. Symmetry breaking and spontaneous polarization occur above a critical tension that opens up a crack in the actin shell. We show that this critical tension is reached by growing branched networks, nucleated by the Arp2/3 complex, in a concentration window of capping protein that limits actin filament growth and by a sufficient number of motors that pull on actin filaments. Our study provides the groundwork to understanding the physical mechanisms at work during polarization prior to cell shape modifications.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Modelos Biológicos , Miosina Tipo II/metabolismo , Polimerização , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Fenômenos Biomecânicos/fisiologia , Biomimética , Biotina , Humanos , Lipossomos/metabolismo , Profilinas/metabolismo , Estreptavidina
17.
Cell ; 151(3): 619-29, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101629

RESUMO

The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. :


Assuntos
Membrana Celular/metabolismo , Dinaminas/metabolismo , Endocitose , Modelos Biológicos , Animais , Células COS , Chlorocebus aethiops , Guanosina Trifosfato/metabolismo , Proteínas SNARE/metabolismo
18.
Proc Natl Acad Sci U S A ; 109(36): 14440-5, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908255

RESUMO

Cells use their dynamic actin network to control their mechanics and motility. These networks are made of branched actin filaments generated by the Arp2/3 complex. Here we study under which conditions the microscopic organization of branched actin networks builds up a sufficient stress to trigger sustained motility. In our experimental setup, dynamic actin networks or "gels" are grown on a hard bead in a controlled minimal protein system containing actin monomers, profilin, the Arp2/3 complex and capping protein. We vary protein concentrations and follow experimentally and through simulations the shape and mechanical properties of the actin gel growing around beads. Actin gel morphology is controlled by elementary steps including "primer" contact, growth of the network, entanglement, mechanical interaction and force production. We show that varying the biochemical orchestration of these steps can lead to the loss of network cohesion and the lack of effective force production. We propose a predictive phase diagram of actin gel fate as a function of protein concentrations. This work unveils how, in growing actin networks, a tight biochemical and physical coupling smoothens initial primer-caused heterogeneities and governs force buildup and cell motility.


Assuntos
Actinas/metabolismo , Movimento Celular/fisiologia , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Fenômenos Biomecânicos , Simulação por Computador , Primers do DNA/genética , Microesferas
19.
J Am Chem Soc ; 134(24): 10080-8, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22621369

RESUMO

Solubilization of integral membrane proteins in aqueous solutions requires the presence of amphiphilic molecules like detergents. The transmembrane region of the proteins is then surrounded by a corona formed by these molecules, ensuring a hydrophilic outer surface. The presence of this corona has strongly hampered structural studies of solubilized membrane proteins by small-angle X-ray scattering (SAXS), a technique frequently used to monitor conformational changes of soluble proteins. Through the online combination of size exclusion chromatography, SAXS, and refractometry, we have determined a precise geometrical model of the n-dodecyl ß-d-maltopyranoside corona surrounding aquaporin-0, the most abundant membrane protein of the eye lens. The SAXS data were well-fitted by a detergent corona shaped in an elliptical toroid around the crystal structure of the protein, similar to the elliptical shape recently reported for nanodiscs (Skar-Gislinge et al. J. Am. Chem. Soc. 2010, 132, 13713-13722). The torus thickness determined from the curve-fitting protocol is in excellent agreement with the thickness of a lipid bilayer, while the number of detergent molecules deduced from the volume of the torus compares well with those obtained on the same sample from refractometry and mass analysis based on SAXS forward scattering. For the first time, the partial specific volume of the detergent surrounding a protein was measured. The present protocol is a crucial step toward future conformational studies of membrane proteins in solution.


Assuntos
Aquaporinas/química , Detergentes/química , Proteínas do Olho/química , Cristalino/química , Maltose/análogos & derivados , Animais , Maltose/química , Modelos Moleculares , Espalhamento a Baixo Ângulo , Ovinos , Solubilidade , Difração de Raios X
20.
Proc Natl Acad Sci U S A ; 109(1): 173-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22184226

RESUMO

Cells are populated by a vast array of membrane-binding proteins that execute critical functions. Functions, like signaling and intracellular transport, require the abilities to bind to highly curved membranes and to trigger membrane deformation. Among these proteins is amphiphysin 1, implicated in clathrin-mediated endocytosis. It contains a Bin-Amphiphysin-Rvs membrane-binding domain with an N-terminal amphipathic helix that senses and generates membrane curvature. However, an understanding of the parameters distinguishing these two functions is missing. By pulling a highly curved nanotube of controlled radius from a giant vesicle in a solution containing amphiphysin, we observed that the action of the protein depends directly on its density on the membrane. At low densities of protein on the nearly flat vesicle, the distribution of proteins and the mechanical effects induced are described by a model based on spontaneous curvature induction. The tube radius and force are modified by protein binding but still depend on membrane tension. In the dilute limit, when practically no proteins were present on the vesicle, no mechanical effects were detected, but strong protein enrichment proportional to curvature was seen on the tube. At high densities, the radius is independent of tension and vesicle protein density, resulting from the formation of a scaffold around the tube. As a consequence, the scaling of the force with tension is modified. For the entire density range, protein was enriched on the tube as compared to the vesicle. Our approach shows that the strength of curvature sensing and mechanical effects on the tube depends on the protein density.


Assuntos
Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Lipossomas Unilamelares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...