Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 15(51): 59905-59911, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38084509

RESUMO

We use epitaxial lateral overgrowth (ELO) to produce semimetallic graphene nanostructures embedded in a semiconducting GaAs matrix for potential applications in plasmonics, THz generation and detection, and tunnel junctions in multijunction solar cells. We show that (1) the combination of low sticking coefficient and fast surface diffusion on graphene enhances nucleation selectivity at exposed regions of the substrate and (2) high growth temperatures favor efficient lateral overgrowth, coalescence, and planarization of epitaxial GaAs films over the graphene nanostructures. Our work provides a more complete understanding of ELO using graphene masks, as opposed to more conventional dielectric masks, and enables new types of metal/semiconductor nanocomposites.

3.
Sci Adv ; 8(51): eadd5328, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563139

RESUMO

The epitaxial growth of functional oxides using a substrate with a graphene layer is a highly desirable method for improving structural quality and obtaining freestanding epitaxial nanomembranes for scientific study, applications, and economical reuse of substrates. However, the aggressive oxidizing conditions typically used in growing epitaxial oxides can damage graphene. Here, we demonstrate the successful use of hybrid molecular beam epitaxy for SrTiO3 growth that does not require an independent oxygen source, thus avoiding graphene damage. This approach produces epitaxial films with self-regulating cation stoichiometry. Furthermore, the film (46-nm-thick SrTiO3) can be exfoliated and transferred to foreign substrates. These results open the door to future studies of previously unattainable freestanding oxide nanomembranes grown in an adsorption-controlled manner by hybrid molecular beam epitaxy. This approach has potentially important implications for the commercial application of perovskite oxides in flexible electronics and as a dielectric in van der Waals thin-film electronics.

4.
Nano Lett ; 22(21): 8647-8653, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36205576

RESUMO

Remote epitaxy is promising for the synthesis of lattice-mismatched materials, exfoliation of membranes, and reuse of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. Alternative mechanisms such as pinhole-seeded epitaxy or van der Waals epitaxy can often explain the resulting films. Here, we show that growth of the Heusler compound GdPtSb on clean graphene/sapphire produces a 30° rotated (R30) superstructure that cannot be explained by pinhole epitaxy. With decreasing temperature, the fraction of this R30 domain increases, compared to the direct epitaxial R0 domain, which can be explained by a competition between remote versus pinhole epitaxy. Careful graphene/substrate annealing and consideration of the relative lattice mismatches are required to obtain epitaxy to the underlying substrate across a series of other Heusler films, including LaPtSb and GdAuGe. The R30 superstructure provides a possible experimental fingerprint of remote epitaxy, since it is inconsistent with the leading alternative mechanisms.

5.
Nat Commun ; 13(1): 4014, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851271

RESUMO

Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with in-situ electron diffraction and photoemission, plus ex-situ atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides an alternative route towards tuning the growth and properties of 3D epitaxial films and membranes on 2D material masks.

6.
ACS Appl Mater Interfaces ; 13(35): 42146-42153, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432424

RESUMO

We quantify the mechanisms for manganese (Mn) diffusion through graphene in Mn/graphene/Ge (001) and Mn/graphene/GaAs (001) heterostructures for samples prepared by graphene layer transfer versus graphene growth directly on the semiconductor substrate. These heterostructures are important for applications in spintronics; however, challenges in synthesizing graphene directly on technologically important substrates such as GaAs necessitate layer transfer and annealing steps, which introduce defects into the graphene. In situ photoemission spectroscopy measurements reveal that Mn diffusion through graphene grown directly on a Ge (001) substrate is 1000 times lower than Mn diffusion into samples without graphene (Dgr,direct ∼ 4 × 10-18 cm2/s, Dno-gr ∼ 5 × 10-15 cm2/s at 500 °C). Transferred graphene on Ge suppresses the Mn in Ge diffusion by a factor of 10 compared to no graphene (Dgr,transfer ∼ 4 × 10-16 cm2/s). For both transferred and directly grown graphene, the low activation energy (Ea ∼ 0.1-0.5 eV) suggests that Mn diffusion through graphene occurs primarily at graphene defects. This is further confirmed as the diffusivity prefactor, D0, scales with the defect density of the graphene sheet. Similar diffusion barrier performance is found on GaAs substrates; however, it is not currently possible to grow graphene directly on GaAs. Our results highlight the importance of developing graphene growth directly on functional substrates to avoid the damage induced by layer transfer and annealing.

7.
Nat Commun ; 12(1): 2494, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941781

RESUMO

Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al2O3 substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetism and magnetostriction) and strain gradients (flexomagnetism).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...