Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 190(4): 1512-1524, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31784877

RESUMO

This work aimed to develop cantilever nanobiosensor functionalized with tyrosinase enzyme to detect 17ß-estradiol and estrone hormones. In this system, the tyrosinase enzyme was covalently immobilized by self-assembled monolayer onto the cantilever sensor surface. It was possible to verify that the high hormone concentration investigated resulted in high voltage response. The nanobiosensor presented a distinction between the concentrations evaluated and was verified sensitivities of 0.497 and 0.101 V/µg, limit of detection of 0.1 and 0.4 ng/L for the hormones 17ß-estradiol and estrone, respectively. The device showed good reversibility and during 30 days of storage maintained about 99% of the original signal. The cantilever nanobiosensor applied in different water samples (ultrapure, river, tap, and mineral) showed good performance, so could be readily extended toward the on-site monitoring of the other trace small molecular pollutants in environmental water matrices.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Estradiol/análise , Estrona/análise , Monofenol Mono-Oxigenase/química , Nanopartículas/química , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Limite de Detecção , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanotecnologia , Rios , Silício/química , Esteroides , Propriedades de Superfície , Água/química
2.
J Environ Sci Health B ; 55(3): 239-249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31680618

RESUMO

Heavy metals can be highly toxic depending on the dose and the chemical form. In this context, sensing devices such as nanobiosensors have been presented as a promising tool to monitor contaminants at micro and nanoscale. In this work, cantilever nanobiosensors with phosphatase alkaline were developed and applied to detect heavy metals (Pb, Ni, Cd, Zn, Co, and Al) in river water. The nanobiosensor surface was functionalized by the self-assembled monolayers (SAM) technique using 16-mercaptohexadecanoic acid, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N- hydroxysuccinimide (NHS), and phosphatase alkaline enzyme. The sensing layer deposited on the cantilever surface presented a uniform morphology, at nanoscale, with 80 nm of thickness. The nanobiosensor showed a detection limit in the ppb range and high sensitivity, with a stability of fifteen days. The developed cantilever nanobiosensor is a simple tool, suitable for the direct detection of contaminants in river water.


Assuntos
Técnicas Biossensoriais/instrumentação , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Técnicas Biossensoriais/métodos , Brasil , Carbodi-Imidas/química , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Desenho de Equipamento , Limite de Detecção , Metilaminas/química , Ácidos Palmíticos/química , Sensibilidade e Especificidade
3.
Food Technol Biotechnol ; 57(3): 369-377, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31866750

RESUMO

The objective of this work is to characterize two types of bovine collagen (fibre and powder), evaluating its application in mixed hamburger formulations, as well as the quality characteristics of the products. The collagen fibre had a fibrillar structure, molecular mass 100 kDa and greater gel strength (146 315 Pa) and protein content (97.81%) than the powdered collagen, which had molecular mass from 50 to 100 kDa, greater hydroxyproline content, and a morphological structure with spherical microparticles more amorphous than the collagen fibre. In this study we found that the addition of 1.5% powdered collagen and 2.5% flocculated soybean flour and/or 0.75% powdered collagen and 3.5% flocculated soybean flour did not deteriorate the technological properties or the sensory attributes of hamburgers. The use of collagen is a promising alternative, since it has functional properties, improves the texture characteristics of a product, and is of low cost.

4.
Food Res Int ; 113: 309-315, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195525

RESUMO

Aroma is closely related to the food product acceptability and an important product quality indicator. Electronic-nose (E-nose) systems are an interesting alternative to traditional methods of aroma analyses. A lab-made E-nose system equipped with an array of sensing units comprised by gold interdigitated microelectrodes (IDEs) using polyaniline (Pani) as sensitive layers deposited by the in situ and Layer-by-layer (LbL) methods was used to analyze aromas in gummy candies. Different concentrations from artificial aromas (apple, strawberry and grape), added to the gummy candies were evaluated. Our system presented 21.6 mV.ppb-1 sensitivity, ppb range detection limit, and good reversibility, around 97.6%. The sensitive layers of Pani films was adequate deposited on IDEs observed by the Attenuated Total Reflection/Fourier-transform infrared spectroscopy (ATR/FTIR). Linear Discriminant Analysis (LDA) was able to classify apple, strawberry, and grape aromas added to gummy candies using saturation potential values from the E-nose system, demonstrating its applicability in food matrices.


Assuntos
Compostos de Anilina/química , Doces/análise , Nariz Eletrônico , Análise de Alimentos/instrumentação , Odorantes/análise , Análise Discriminante , Desenho de Equipamento , Análise de Alimentos/métodos , Ouro , Limite de Detecção , Microeletrodos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Appl Biochem Biotechnol ; 186(4): 1061-1073, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29862444

RESUMO

A cantilever nanobiosensor functionalized with vegetable source of peroxidase was developed as an innovative way for glyphosate herbicide detection over a wide concentration range (0.01 to 10 mg L-1) using atomic force microscopy (AFM) technique. The extract obtained from zucchini (Cucurbita pepo source of peroxidase), with high enzymatic activity and stability has been used as bio-recognition element to develop a nanobiosensor. The polarization-modulated reflection absorption infrared spectroscopy (PM-RAIRS) demonstrated the deposition of enzyme on cantilever surface using self-assembled monolayers (SAM) by the presence of the amide I and II bands. The detection mechanism of glyphosate was based on the changes in surface tension caused by the analyte adsorption, resulting in a conformational change in the enzyme structure. In this way, the results of nanobiosensor demonstrate the potential of the sensing device for detecting glyphosate with a detection limit of 0.028 mg L-1.


Assuntos
Técnicas Biossensoriais/métodos , Cucurbita/enzimologia , Glicina/análogos & derivados , Peroxidase/química , Proteínas de Plantas/química , Glicina/análise , Glifosato
6.
J Environ Sci Health B ; 53(4): 229-236, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29319411

RESUMO

The aim of this study was to develop a cantilever nanobiosensor for atrazine detection in liquid medium by immobilising the biological recognition element (tyrosinase vegetal extract) on its surface with self-assembled monolayers using gold, 16-mercaptohexadecanoic acid, 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/n-hydroxysuccinimide. Cantilever nanobiosensors presented a surface compression tension increase when atrazine concentrations were increased, with a limit of detection and limit of quantification of 7.754 ppb (parts per billion) and 22.792 ppb, respectively. From the voltage results obtained, the evaluation of atrazine contamination in river and drinking water were very close to those of the reference sample and ultrapure water, demonstrating the ability of the cantilever nanobiosensor to distinguish different water samples and different concentrations of atrazine. Cantilever nanosensor surface functionalization was characterised by combining polarisation modulation infrared reflection-absorption spectroscopy and atomic force microscopy and indicating film thickness in nanometric scale (80.2 ± 0.4 nm). Thus, the cantilever nanobiosensor developed for this study using low cost tyrosinase vegetal extract was adequate for atrazine detection, a potential tool in the environmental field.


Assuntos
Atrazina/análise , Técnicas Biossensoriais , Monofenol Mono-Oxigenase/metabolismo , Nanotecnologia , Água Potável/química , Contaminação de Alimentos/análise , Ouro/química , Herbicidas/análise , Imidas/química , Limite de Detecção , Musa/química , Musa/enzimologia , Ácidos Palmíticos/química , Extratos Vegetais/química , Propilaminas/química , Rios/química , Propriedades de Superfície
7.
ACS Appl Mater Interfaces ; 9(23): 19646-19652, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28481518

RESUMO

The fast growth of celiac disease diagnosis has sparked the production of gluten-free food and the search for reliable methods to detect gluten in foodstuff. In this paper, we report on a microfluidic electronic tongue (e-tongue) capable of detecting trace amounts of gliadin, a protein of gluten, down to 0.005 mg kg-1 in ethanol solutions, and distinguishing between gluten-free and gluten-containing foodstuff. In some cases, it is even possible to determine whether gluten-free foodstuff has been contaminated with gliadin. That was made possible with an e-tongue comprising four sensing units, three of which made of layer-by-layer (LbL) films of semiconducting polymers deposited onto gold interdigitated electrodes placed inside microchannels. Impedance spectroscopy was employed as the principle of detection, and the electrical capacitance data collected with the e-tongue were treated with information visualization techniques with feature selection for optimizing performance. The sensing units are disposable to avoid cross-contamination as gliadin adsorbs irreversibly onto the LbL films according to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) analysis. Small amounts of material are required to produce the nanostructured films, however, and the e-tongue methodology is promising for low-cost, reliable detection of gliadin and other gluten constituents in foodstuff.


Assuntos
Gliadina/análise , Nariz Eletrônico , Glutens , Microfluídica
8.
Phys Chem Chem Phys ; 16(44): 24275-81, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25298297

RESUMO

The fabrication of nanostructured films with tailored properties is essential for many applications, particularly with materials such as polyaniline (PANI) whose electrical characteristics may be easily tuned. In this study we report the one-step synthesis of AgCl-PANI nanocomposites that could form layer-by-layer (LbL) films with poly(sodium 4-styrenesulfonate) (PSS) and be used for electronic tongues (e-tongues). The first AgCl-PANI layer was adsorbed on a quartz substrate according to a nucleation-and-growth mechanism explained using the Johnson-Mehl-Avrami (JMA) model, revealing a 3D film growth confirmed by atomic force microscopy (AFM) measurements for the AgCl-PANI/PSS LbL films. In contrast to conventional PANI-containing films, the AgCl-PANI/PSS LbL films deposited on interdigitated electrodes exhibited electrical resistance that was practically unaffected by changes in pH from 4 to 9, and therefore these films can be used in e-tongues for both acidic and basic media. With a sensor array made of AgCl-PANI/PSS LbL films with different numbers of bilayers, we demonstrated the suitability of the AgCl-PANI nanocomposite for an e-tongue capable of clearly discriminating the basic tastes from salt, acid and umami solutions. Significantly, the hybrid AgCl-PANI nanocomposite is promising for any application in which PANI de-doping at high pH is to be avoided.

9.
Sensors (Basel) ; 12(6): 8278-300, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969400

RESUMO

This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.


Assuntos
Técnicas Biossensoriais/instrumentação , Microscopia de Força Atômica/métodos , Nanotecnologia/instrumentação , Fenômenos Mecânicos , Silício/química
10.
Sensors (Basel) ; 11(6): 6425-34, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163963

RESUMO

A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness.


Assuntos
Grafite/análise , Absorção , Compostos de Anilina/análise , Benzenossulfonatos/análise , Cânfora/análise , Desenho de Equipamento , Etilenos/análise , Frutas , Gases , Mesilatos/análise , Musa , Polímeros/química , Espectrofotometria Ultravioleta/métodos , Ácidos Sulfônicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...