Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(4): 269, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627369

RESUMO

Most of the patients affected by neuronopathic forms of Mucopolysaccharidosis type II (MPS II), a rare lysosomal storage disorder caused by defects in iduronate-2-sulfatase (IDS) activity, exhibit early neurological defects associated with white matter lesions and progressive behavioural abnormalities. While neuronal degeneration has been largely described in experimental models and human patients, more subtle neuronal pathogenic defects remain still underexplored. In this work, we discovered that the axon guidance receptor Deleted in Colorectal Cancer (Dcc) is significantly dysregulated in the brain of ids mutant zebrafish since embryonic stages. In addition, thanks to the establishment of neuronal-enriched primary cell cultures, we identified defective proteasomal degradation as one of the main pathways underlying Dcc upregulation in ids mutant conditions. Furthermore, ids mutant fish-derived primary neurons displayed higher levels of polyubiquitinated proteins and P62, suggesting a wider defect in protein degradation. Finally, we show that ids mutant larvae display an atypical response to anxiety-inducing stimuli, hence mimicking one of the characteristic features of MPS II patients. Our study provides an additional relevant frame to MPS II pathogenesis, supporting the concept that multiple developmental defects concur with early childhood behavioural abnormalities.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Doenças do Sistema Nervoso , Animais , Orientação de Axônios , Encéfalo/metabolismo , Iduronato Sulfatase/metabolismo , Mucopolissacaridose II/metabolismo , Doenças do Sistema Nervoso/patologia , Peixe-Zebra/metabolismo
2.
Biomolecules ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38672460

RESUMO

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Assuntos
Antioxidantes , Edaravone , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Animais , Humanos , Camundongos , Antioxidantes/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Edaravone/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
3.
Sci Rep ; 13(1): 10289, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357221

RESUMO

Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Ácido Idurônico , Sistemas CRISPR-Cas , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Mucopolissacaridose II/genética , Linhagem Celular
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047777

RESUMO

Among multiple cytoprotective mechanisms, eukaryotic cells exhibit a complex transcriptional program relying on the Nrf2 transcription factor, which is generally recruited upon biological stressors including oxidative-stress-based cellular insults. The relevance of this master regulator has remarkably emerged in recent years in several research fields such as cancer, inflammatory disorders and age-related neurological diseases. Here, we document the generation and characterization of a novel Nrf2/ARE pathway biosensor fish which exhibits a dynamic spatiotemporal expression profile during the early developmental stages. The transgenic line is responsive to known Nrf2 pathway modulators but also to Edaravone, which direct activity on the Nrf2 pathway has never been documented in a live transgenic fish model. We also show that the reporter is faithfully activated during fin regeneration, and its degree of expression is slightly affected in a glucocerebrosidase (Gba1) morphant zebrafish model. Therefore, this novel transgenic fish may represent a valuable tool to be exploited for the characterization of zebrafish models of human diseases, as well as for primary high-throughput drug screening.


Assuntos
Fator 2 Relacionado a NF-E2 , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Animais Geneticamente Modificados/genética , Antioxidantes/metabolismo , Proteínas de Peixe-Zebra/metabolismo
5.
Biomolecules ; 11(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573025

RESUMO

Axonal trajectories and neural circuit activities strongly rely on a complex system of molecular cues that finely orchestrate the patterning of neural commissures. Several of these axon guidance molecules undergo continuous recycling during brain development, according to incompletely understood intracellular mechanisms, that in part rely on endocytic and autophagic cascades. Based on their pivotal role in both pathways, lysosomes are emerging as a key hub in the sophisticated regulation of axonal guidance cue delivery, localization, and function. In this review, we will attempt to collect some of the most relevant research on the tight connection between lysosomal function and axon guidance regulation, providing some proof of concepts that may be helpful to understanding the relation between lysosomal storage disorders and neurodegenerative diseases.


Assuntos
Orientação de Axônios , Axônios/metabolismo , Lisossomos/química , Autofagia , Encéfalo/metabolismo , Endossomos/metabolismo , Efrinas/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Netrinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Semaforinas/metabolismo
6.
Hum Mol Genet ; 29(2): 274-285, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816052

RESUMO

Bone differentiation defects have been recently tied to Wnt signaling alterations occurring in vitro and in vivo Gaucher disease (GD) models. In this work, we provide evidence that the Wnt signaling multi-domain intracellular transducers Dishevelled 1 and 2 (DVL1 and DVL2) may be potential upstream targets of impaired beta glucosidase (GBA1) activity by showing their misexpression in different type 1 GD in vitro models. We also show that in Gba mutant fish a miR-221 upregulation is associated with reduced dvl2 expression levels and that in type I Gaucher patients single-nucleotide variants in the DVL2 3' untranslated region are related to variable canonical Wnt pathway activity. Thus, we strengthen the recently outlined relation between bone differentiation defects and Wnt/ß-catenin dysregulation in type I GD and further propose novel mechanistic insights of the Wnt pathway impairment caused by glucocerebrosidase loss of function.


Assuntos
Proteínas Desgrenhadas/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Via de Sinalização Wnt/genética , Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Modelos Animais de Doenças , Proteínas Desgrenhadas/genética , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Transcrição Gênica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...