Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 449(2): 307-18, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23240611

RESUMO

Intrinsically disordered proteins participate in important protein-protein and protein-nucleic acid interactions and control cellular phenotypes through their prominence as dynamic organizers of transcriptional, post-transcriptional and signalling networks. These proteins challenge the tenets of the structure-function paradigm and their functional mechanisms remain a mystery given that they fail to fold autonomously into specific structures. Solving this mystery requires a first principles understanding of the quantitative relationships between information encoded in the sequences of disordered proteins and the ensemble of conformations they sample. Advances in quantifying sequence-ensemble relationships have been facilitated through a four-way synergy between bioinformatics, biophysical experiments, computer simulations and polymer physics theories. In the present review we evaluate these advances and the resultant insights that allow us to develop a concise quantitative framework for describing the sequence-ensemble relationships of intrinsically disordered proteins.


Assuntos
Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Sítios de Ligação , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Solventes/química , Termodinâmica
2.
J Chem Phys ; 137(6): 064104, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22897252

RESUMO

Accurate models of alkali and halide ions in aqueous solution are necessary for computer simulations of a broad variety of systems. Previous efforts to develop ion force fields have generally focused on reproducing experimental measurements of aqueous solution properties such as hydration free energies and ion-water distribution functions. This dependency limits transferability of the resulting parameters because of the variety and known limitations of water models. We present a solvent-independent approach to calibrating ion parameters based exclusively on crystal lattice properties. Our procedure relies on minimization of lattice sums to calculate lattice energies and interionic distances instead of equilibrium ensemble simulations of dense fluids. The gain in computational efficiency enables simultaneous optimization of all parameters for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that enforce consistency with periodic table trends. We demonstrate the method by presenting lattice-derived parameters for the primitive model and the Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting parameters successfully reproduce the lattice properties used to derive them and are free from the influence of any water model. To assess the transferability of the Lennard-Jones parameters to aqueous systems, we used them to estimate hydration free energies and found that the results were in quantitative agreement with experimentally measured values. These lattice-derived parameters are applicable in simulations where coupling of ion parameters to a particular solvent model is undesirable. The simplicity and low computational demands of the calibration procedure make it suitable for parametrization of crystallizable ions in a variety of force fields.


Assuntos
Álcalis/química , Íons/química , Simulação por Computador , Entropia , Modelos Químicos , Solventes/química , Termodinâmica , Água
3.
Sci Signal ; 5(220): pe17, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22510467

RESUMO

Eukaryotic proteins often possess long stretches that fail to adopt well-defined, three-dimensional structures. These intrinsically disordered regions are associated with cell signaling through the enrichment of hub proteins of networks and as targets for posttranslational modifications. Although disordered regions are readily identified because of their distinct sequence characteristics, it is difficult to predict the functions associated with these regions. This is because disordered regions often house short (two- to five-residue) linear motifs that mediate intermolecular interactions. Predicting their function requires the ability to identify the functionally relevant motifs. If one assumes that functional motifs are highly conserved as compared to background sequence contexts, then a suitable comparative genomics approach proves to be powerful in unmasking functional motifs that are part of disordered regions. This approach has successfully identified known functional motifs and predicted a set of new motifs that might yield important insights regarding previously unknown functionalities for disordered regions. Given knowledge of highly conserved motifs, one can assess whether the rapidly changing sequence contexts are actuators of the functionalities of short linear motifs within disordered regions. This should have important implications for engineering and targeting hub proteins in signaling networks.


Assuntos
Motivos de Aminoácidos , Proteínas/química , Genômica/métodos , Conformação Proteica
4.
J Phys Chem B ; 116(23): 6862-71, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22329658

RESUMO

Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semirigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ angles, and the coupling between ring puckering and backbone degrees of freedom.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Método de Monte Carlo , Conformação Proteica
5.
Proc Natl Acad Sci U S A ; 107(18): 8183-8, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20404210

RESUMO

Intrinsically disordered proteins (IDPs) adopt heterogeneous ensembles of conformations under physiological conditions. Understanding the relationship between amino acid sequence and conformational ensembles of IDPs can help clarify the role of disorder in physiological function. Recent studies revealed that polar IDPs favor collapsed ensembles in water despite the absence of hydrophobic groups--a result that holds for polypeptide backbones as well. By studying highly charged polypeptides, a different archetype of IDPs, we assess how charge content modulates the intrinsic preference of polypeptide backbones for collapsed structures. We characterized conformational ensembles for a set of protamines in aqueous milieus using molecular simulations and fluorescence measurements. Protamines are arginine-rich IDPs involved in the condensation of chromatin during spermatogenesis. Simulations based on the ABSINTH implicit solvation model predict the existence of a globule-to-coil transition, with net charge per residue serving as the discriminating order parameter. The transition is supported by quantitative agreement between simulation and experiment. Local conformational preferences partially explain the observed trends of polymeric properties. Our results lead to the proposal of a schematic protein phase diagram that should enable prediction of polymeric attributes for IDP conformational ensembles using easily calculated physicochemical properties of amino acid sequences. Although sequence composition allows the prediction of polymeric properties, interresidue contact preferences of protamines with similar polymeric attributes suggest that certain details of conformational ensembles depend on the sequence. This provides a plausible mechanism for specificity in the functions of IDPs.


Assuntos
Protaminas/química , Sequência de Aminoácidos , Soluções Tampão , Eletrólitos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...