Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Adv Sci (Weinh) ; : e2402768, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874399

RESUMO

Efficient neutrophil migration to infection sites plays a vital role in the body's defense against bacterial infections and natural immune responses. Neutrophils have a short lifespan and cannot be mass-cultured in vitro. Therefore, developing more stable artificial neutrophils (AN) in a controllable manner has become a research focus. However, existing AN lack chemotaxis, which is the ability to migrate toward high-signal-concentration positions in a dynamic blood- flow environment. Supplying AN with chemotaxis is key to designing AN that are more similar to natural neutrophils in terms of morphology and function. In this study, micrometer-sized, spherical, biocompatible AN are developed. These AN consist of zeolitic imidazolate framework-8 nanoparticles encapsulating two enzymes, coacervate droplet frameworks, and outer phospholipid bilayers carrying enzymes. The AN exhibit responsiveness to elevated hydrogen peroxide levels at inflammation sites, actively chemotaxing toward these sites along concentration gradients. They also demonstrate effective combat against Staphylococcus aureus infections. The capabilities of the AN are further validated through in vitro experiments and in vivo evaluations using vascular graft infection models. This study replicates natural neutrophils in terms of chemical composition, functionality, and physiological impact. It introduces new ideas for advancing the development of advanced artificial cells.

2.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2710-2721, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812171

RESUMO

Studies have reported that the hemostatic effect of Sanguisorbae Radix(SR) is significantly enhanced after processing with charcoal. However, the standard components(tannins and gallic acid) specified in the Chinese Pharmacopeia decrease in charcoal-fried Sanguisorbae Radix(CSR), which is contrast to the enhancement of the hemostatic effect. Therefore, this study aimed to optimize the charcoal-frying process of SR based on its hemostatic efficacy and comprehensively analyze the components of SR and its processed products, thus exploring the material basis for the hemostatic effect. The results indicated that SR processed at 250 ℃ for 14 min(14-min CSR) not only complied with the description in the Chinese Pharmacopeia but also demonstrated improved blood-coagulating and blood-adsorbing effects compared with raw SR(P<0.05). Moroever, 14-min CSR reduced the bleeding time in the rat models of tail snipping, liver bleeding, and muscle injury, surpassing both raw and excessively fried SR(16 min processed) as well as tranexamic acid(P<0.05). Ellagitannin, ellagic acid, methyl gallate, pyrogallic acid, protocatechuic acid, Mg, Ca, Mn, Cu, and Zn contributed to the hemostatic effect of CSR over SR. Among these substances, ellagitannin, ellagic acid, Mg, and Ca had high content in the 14 min CSR, reaching(106.73±14.87),(34.86±4.43),(2.81±0.23), and(1.21±0.23) mg·g~(-1), respectively. Additionally, the color difference value(ΔE~*ab) of SR processed to different extents was correlated with the content of the aforementioned hemostatic substances. In summary, this study optimized the charcoal-frying process as 250 ℃ for 14 min for SR based on its hemostatic effect. Furthermore, ellagic acid and/or the powder chromaticity are proposed as indicators for the processing and quality control of CSR.


Assuntos
Carvão Vegetal , Medicamentos de Ervas Chinesas , Hemostáticos , Ratos Sprague-Dawley , Sanguisorba , Animais , Ratos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Hemostáticos/farmacologia , Hemostáticos/química , Sanguisorba/química , Carvão Vegetal/química , Masculino , Culinária , Coagulação Sanguínea/efeitos dos fármacos , Humanos
3.
Nat Nanotechnol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802669

RESUMO

Mitochondrial transplantation is an important therapeutic strategy for restoring energy supply in patients with ischaemic heart disease (IHD); however, it is limited by the invasiveness of the transplantation method and loss of mitochondrial activity. Here we report successful mitochondrial transplantation by oral administration for IHD therapy. A nitric-oxide-releasing nanomotor is modified on the mitochondria surface to obtain nanomotorized mitochondria with chemotactic targeting ability towards damaged heart tissue due to nanomotor action. The nanomotorized mitochondria are packaged in enteric capsules to protect them from gastric acid erosion. After oral delivery the mitochondria are released in the intestine, where they are quickly absorbed by intestinal cells and secreted into the bloodstream, allowing delivery to the damaged heart tissue. The regulation of disease microenvironment by the nanomotorized mitochondria can not only achieve rapid uptake and high retention of mitochondria by damaged cardiomyocytes but also maintains high activity of the transplanted mitochondria. Furthermore, results from animal models of IHD indicate that the accumulated nanomotorized mitochondria in the damaged heart tissue can regulate cardiac metabolism at the transcriptional level, thus preventing IHD progression. This strategy has the potential to change the therapeutic strategy used to treat IHD.

5.
Insect Biochem Mol Biol ; 168: 104115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570118

RESUMO

Biting midges, notably those within the Ceratopogonidae family, have long been recognized for their epidemiological significance, both as nuisances and vectors for disease transmission in vertebrates. Despite their impact, genomic insights into these insects, particularly beyond the Culicoides genus, remain limited. In this study, we assembled the Forcipomyia taiwana (Shiraki) genome, comprising 113 scaffolds covering 130.4 Mbps-with the longest scaffold reaching 7.6 Mbps and an N50 value of 2.6 Mbps-marking a pivotal advancement in understanding the genetic architecture of ceratopogonid biting midges. Phylogenomic analyses reveal a shared ancestry between F. taiwana and Culicoides sonorensis Wirth & Jones, dating back approximately 124 million years, and highlight a dynamic history of gene family expansions and contractions within the Ceratopogonidae family. Notably, a substantial expansion of the odorant receptor (OR) gene family was observed, which is crucial for the chemosensory capabilities that govern biting midges' interactions with their environment, including host seeking and oviposition behaviors. The distribution of OR genes across the F. taiwana genome displays notable clusters on scaffolds, indicating localized tandem gene duplication events. Additionally, several collinear regions were identified, hinting at segmental duplications, inversions, and translocations, contributing to the olfactory system's evolutionary complexity. Among the 156 ORs identified in F. taiwana, 134 are biting midge-specific ORs, distributed across three distinct clades, each exhibiting unique motif features that distinguish them from the others. Through weighted gene co-expression network analysis, we correlated distinct gene modules with sex and reproductive status, laying the groundwork for future investigations into the interplay between gene expression and adaptive behaviors in F. taiwana. In conclusion, our study not only highlights the unique olfactory repertoire of ceratopogonid biting midges but also sets the stage for future studies into the genetic underpinnings of their unique biological traits and ecological strategies.


Assuntos
Ceratopogonidae , Feminino , Animais , Ceratopogonidae/genética , Perfilação da Expressão Gênica
6.
Dalton Trans ; 53(17): 7315-7320, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38590209

RESUMO

In recent years, organic-inorganic hybrid materials have demonstrated exceptional performance in nonlinear optics, attracting widespread attention. However, there are relatively few examples of coordination compounds synthesized with Cu as the metal center that exhibit excellent nonlinear optical properties. In this study, we successfully synthesized a pair of enantiomers named R/S-Cu2I2 by reacting chiral ligands with CuI. The crystal structure reveals a one-dimensional copper-iodide chain structure built by Cu2I2 clusters, and its ordered arrangement in space provides not only a strong second harmonic generation (SHG) signal (1.24 × KDP) but also a large birefringence (0.15@1064 nm). Under excitation at 395 nm, the crystals exhibit red fluorescence peaked at 675 nm. The CD spectra of R/S-Cu2I2 show a distinct mirror-symmetric Cotton effect, and their CPL signals are corresponding and opposite in the emission range, with a maximum glum of approximately ±2.5 × 10-3. Theoretical calculations using density functional theory were also carried out to enhance our understanding of the correlation between their structures and optical properties.

7.
J Colloid Interface Sci ; 663: 396-404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412725

RESUMO

The lack of selective release ability in the tumor microenvironment and the limited efficacy of monotherapy are important factors that limit the current use of carbon monoxide (CO) donors for tumor therapy. Herein, inspired by endogenous biochemical reactions in vivo, one kind of CO-releasing nanomotor was designed for the multimodal synergistic treatment of tumor. Specifically, glucose oxidase (GOx) and 5-aminolevulinic acid (5-ALA) were co-modified onto metal-organic framework material (MIL-101) to obtain MIL-GOx-ALA nanomotors (M-G-A NMs), which exhibit excellent biocompatibility and degradation ability in tumor microenvironment. Subsequently, the released 5-ALA generates CO in the tumor microenvironment through an endogenous reaction and further acts on mitochondria to release large amounts of reactive oxygen species (ROS), which directly kill tumor cells. Furthermore, the produced ROS and the degradation products of M-G-A NMs can also provide the reaction substrate for the Fenton reaction, thereby enhancing chemodynamic therapy (CDT) and inducing apoptosis of tumor cells. Both in vitro and in vivo experimental data confirm the successful occurrence of the above process, and the combination of CO gas therapy/enhanced CDT can effectively inhibit tumor growth. This CDT-enhancing agent designed based on endogenous biochemical reactions has good prospects for tumor treatment application.


Assuntos
Nanopartículas , Neoplasias , Humanos , Monóxido de Carbono , Espécies Reativas de Oxigênio , Terapia Combinada , Ácido Aminolevulínico , Apoptose , Glucose Oxidase , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Biomater Sci ; 12(5): 1281-1293, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38252410

RESUMO

Acute liver injury (ALI) is a highly fatal condition characterized by sudden massive necrosis of liver cells, inflammation, and impaired coagulation function. Currently, the primary clinical approach for managing ALI involves symptom management based on the underlying causes. The association between excessive reactive oxygen species originating from macrophages and acute liver injury is noteworthy. Therefore, we designed a novel nanoscale phase variant contrast agent, denoted as PFP@CeO2@Lips, which effectively scavenges reactive oxygen species, and enables visualization through low intensity pulsed ultrasound activation. The efficacy of the nanoparticles in scavenging excess reactive oxygen species from RAW264.7 and protective AML12 cells has been demonstrated through in vitro and in vivo experiments. Additionally, these nanoparticles have shown a protective effect against LPS/D-GalN attack in C57BL/6J mice. Furthermore, when exposed to LIPUS irritation, the nanoparticles undergo liquid-gas phase transition and enable ultrasound imaging.


Assuntos
Fígado , Nanopartículas , Camundongos , Animais , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL , Fígado/diagnóstico por imagem , Inflamação , Ondas Ultrassônicas
9.
J Mater Chem B ; 12(6): 1446-1466, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265305

RESUMO

Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.


Assuntos
Cirrose Hepática , Nanoestruturas , Humanos , Cirrose Hepática/patologia , Hepatócitos/patologia , Fibrose , Matriz Extracelular
10.
J Control Release ; 365: 1089-1123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065416

RESUMO

Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Biomarcadores/metabolismo , Transporte Biológico
11.
Small ; 20(6): e2306191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775935

RESUMO

In nature, many organisms respond chemotactically to external chemical stimuli in order to extract nutrients or avoid danger. Inspired by this natural chemotaxis, micro/nanomotors with chemotactic properties have been developed and applied to study a variety of disease models. This chemotactic strategy has shown promising results and has attracted the attention of an increasing number of researchers. This paper mainly reviews the construction methods of different types of chemotactic micro/nanomotors, the mechanism of chemotaxis, and the potential applications in biomedicine. First, based on the classification of materials, the construction methods and therapeutic effects of chemotactic micro/nanomotors based on natural cells and synthetic materials in cellular and animal experiments will be elaborated in detail. Second, the mechanism of chemotaxis of micro/nanomotors is elaborated in detail: chemical reaction induced chemotaxis and physical process driven chemotaxis. In particular, the main differences and significant advantages between chemotactic micro/nanomotors and magnetic, electrical and optical micro/nanomotors are described. The applications of chemotactic micro/nanomotors in the biomedical fields in recent years are then summarized, focusing on the mechanism of action and therapeutic effects in cancer and cardiovascular disease. Finally, the authors are looking forward to the future development of chemotactic micro/nanomotors in the biomedical fields.


Assuntos
Nanoestruturas , Nanotecnologia , Animais , Nanotecnologia/métodos , Nanoestruturas/química , Quimiotaxia
12.
ACS Biomater Sci Eng ; 9(11): 5999-6023, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37921277

RESUMO

The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Melanoma , Humanos , Vacinas Anticâncer/uso terapêutico , Antígenos de Neoplasias , Neoplasias Pulmonares/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Microambiente Tumoral
13.
ACS Appl Bio Mater ; 6(11): 4518-4548, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37916787

RESUMO

Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.


Assuntos
Neoplasias Peritoneais , Humanos , Neoplasias Peritoneais/terapia , Peritônio , Qualidade de Vida , Ascite , Terapia Combinada
14.
Heliyon ; 9(10): e20226, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876439

RESUMO

Objective: COPD is the most common chronic respiratory disease with complex environmental and genetic etiologies. It was reported that EPAS1 might participate in the occurrence and development of respiratory diseases. However, the association between EPAS1 and COPD was unclear. Methods: First, a case-control study enrolling 1130 COPD patients and 1115 healthy controls in Guangzhou was conducted to clarify the association between EPAS1 polymorphisms and COPD susceptibility. Secondly, a prevalence study recruited 882 participants in Gansu to verify the effect of positive polymorphisms on lung function. Finally, the 10-year absolute risk considering environmental factors and genetic variations was calculated by the method of Gail and Bruzzi. Results: EPAS1 rs13419896 AA genotype reduced COPD risk in southern Chinese (AA vs. GG: adjusted OR = 0.689, 95% CI = 0.498-0.955; AA vs. GG/GA: adjusted OR = 0.701, 95% CI = 0.511-0.962). Further, the rs13419896 A allele was significantly associated with higher pre-FEV1/pre-FVC in both the Guangzhou and Gansu populations (P < 0.05). Smoking status, coal as fuels, education level, and rs13419896 G > A were finally retained to develop a relative risk model for males. Smoking status, biomass as fuels, and rs13419896 G > A were retained in the female model. The population-attributable risk of the male or female model was 0.457 (0.283-0.632) and 0.421 (0.227-0.616), respectively. Conclusions: This study first revealed that EPAS1 rs13419896 G > A decreased COPD susceptibility and could be a genetic marker to predict the 10-year absolute risk for COPD.

15.
Front Biosci (Landmark Ed) ; 28(9): 215, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37796693

RESUMO

BACKGROUND: The occurrence and development of chronic obstructive pulmonary disease (COPD) are regulated by environmental and genetic factors. In hypoxia, Erythropoietin (EPO) satisfies the body's need for oxygen by promoting the production of red blood cells. Hypoxia was proven to be a common physiological condition in COPD progression and associated with many complications. Some studies have found that EPO is involved in the development of COPD. But the mechanism has not been fully proven. METHODS: We conducted a case-control study enrolled 1095 COPD patients and 1144 healthy controls in Guangdong Province to evaluate the association between EPO polymorphisms (rs1617640 A>C, rs507392 A>G, rs564449 G>T) and COPD susceptibility. 872 participants from southern Gansu Province were recruited to verify the effect of EPO polymorphisms on lung function. RESULTS: EPO rs1617640 C allele reduced COPD susceptibility in southern Chinese significantly (AC vs. AA: adjusted Odds ratio (OR) = 0.805, 95% CI = 0.669-0.969; AC+CC vs. AA: adjusted OR = 0.822, 95% CI = 0.689-0.980). However, there was no association between rs507392 A>G and rs564449 G>T polymorphisms and COPD susceptibility (p > 0.05). We further observed that the rs1617640 C allele was associated with higher FEV1 and FVC in Guangdong and Gansu populations significantly (both p < 0.05). In brief, the level of FEV1 and FVC increased with the C allele number. We modeled the relative risk for men and women, in which the population-attributable risks chances were 0.449 (0.258-0.641) and 0.262 (0.128-0.396) respectively. In this model, smoking status, coal as fuels, education level, and rs1617640 A>C were finally retained for males, while smoking status, biomass as fuels, and1617640 A>C were retained for females. In the end, using the method developed by Gail and Bruzzi, we fitted a 10-year absolute risk model for southern Chinese with different individual relative risks, which was presented as a table. CONCLUSIONS: In conclusion, this study found that EPO rs1617640 A>C polymorphism is associated with COPD susceptibility in southern Chinese, and the C allele was associated with better lung function. In addition, it could also be considered a genetic marker associated with environmental factors to predict the absolute 10-year risk of COPD in southern Chinese.


Assuntos
Eritropoetina , Doença Pulmonar Obstrutiva Crônica , Feminino , Humanos , Masculino , Estudos de Casos e Controles , Eritropoetina/genética , Predisposição Genética para Doença , Hipóxia , Polimorfismo de Nucleotídeo Único , Fatores de Proteção , Doença Pulmonar Obstrutiva Crônica/genética
16.
Zhongguo Zhong Yao Za Zhi ; 48(18): 5003-5013, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802842

RESUMO

In this study, CM-5 spectrophotometer and Heracles NEO ultra-fast gas-phase electronic nose were used to analyze the changes in color and odor of vinegar-processed Cyperi Rhizoma(VPCR) pieces. Various analysis methods such as DFA and partial least squares discriminant analysis(PLS-DA) were combined to identify different processing degrees and quantify the end point of processing. The results showed that with the increase in vinegar processing, the brightness parameter L~* of VPCR pieces decreased gradua-lly, while the red-green value a~* and yellow-blue value b~* initially increased and reached their maximum at 8 min of processing, followed by a gradual decrease. A discriminant model based on the color parameters L~*, a~*, and b~* was established(with a discrimination accuracy of 98.5%), which effectively differentiated different degrees of VPCR pieces. Using the electronic nose, 26 odor components were identified from VPCR samples at different degrees of vinegar processing. DFA and PLS-DA models were established for different degrees of VPCR pieces. The results showed that the 8-min processed samples were significantly distinct from other samples. Based on variable importance in projection(VIP) value greater than 1, 10 odor components, including 3-methylfuran, 2-methylbuty-raldehyde, 2-methylpropionic acid, furfural, and α-pinene, were selected as odor markers for differentiating the degrees of vinegar processing in VPCR. By combining the changes in color and the characteristic odor components, the optimal processing time for VPCR was determined to be 8 min. This study provided a scientific basis for the standardization of vinegar processing techniques for VPCR and the improvement of its quality standards and also offered new methods and ideas for the rapid identification and quality control of the end point of processing for other traditional Chinese medicine.


Assuntos
Ácido Acético , Medicamentos de Ervas Chinesas , Medicamentos de Ervas Chinesas/análise , Rizoma/química , Controle de Qualidade , Eletrônica
17.
J Colloid Interface Sci ; 651: 567-578, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37562299

RESUMO

The limitations of light source limit the clinical application of optical therapy technology. How to improve the application efficiency of radiant light has become the focus of researchers. Here, we synthesize a kind of UCNPs@PVP-GOx-PpIX-Fe3+ (UPGPF) nanoreactors with rare earth upconversion nanoparticles (UCNPs) as the substrate for the enhancement of ferroptosis effect by the synergistic starvation/photodynamic therapies. Firstly, glucose oxidase (GOx) and Fe3+ loaded in UPGPF nanoreactors are used to directly face the problems of insufficient H2O2 level in tumor tissue and low Fenton reaction efficiency. Further, UCNPs can absorb NIR light at 980 nm and convert low-energy photons into high-energy photons, thereby cleverly generating ultraviolet (UV) radiation induction in vivo, which can produce a synergistic effect of enhancing iron death. The in vivo experimental results of breast cancer model mice show that the UPGPF nanoreactors have significant anticancer effect and good biosafety. With the help of the optical conversion characteristics of UCNPs, this kind of treatment idea of building a UV radiation-induced microplatform in the tumor microenvironment, which leads to the synergistic enhancement of iron death effect, provides a promising innovative design strategy for tumor research.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Animais , Camundongos , Raios Ultravioleta , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Nanopartículas/uso terapêutico , Nanotecnologia , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
19.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3806-3814, 2023 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-37475072

RESUMO

The weight coefficients of appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol were determined by analytic hierarchy process(AHP), criteria importance though intercrieria correlation(CRITIC), and AHP-CRITIC weighting method, and the comprehensive scores were calculated. The effects of ginger juice dosage, moistening time, proces-sing temperature, and processing time on the quality of Magnoliae Officinalis Cortex(MOC) were investigated, and Box-Behnken design was employed to optimize the process parameters. To reveal the processing mechanism, MOC, ginger juice-processed Magnoliae Officinalis Cortex(GMOC), and water-processed Magnoliae Officinalis Cortex(WMOC) were compared. The results showed that the weight coefficients of the appearance traits, extract yield of standard decoction, and total content of honokiol and magnolol determined by AHP-CRITIC weighting method were 0.134, 0.287, and 0.579, respectively. The optimal processing parameters of GMOC were ginger juice dosage of 8%, moistening time of 120 min, and processing at 100 ℃ for 7 min. The content of syringoside and magnolflorine in MOC decreased after processing, and the content of honokiol and magnolol followed the trend of GMOC>MOC>WMOC, which suggested that the change in clinical efficacy of MOC after processing was associated with the changes of chemical composition. The optimized processing technology is stable and feasible and provides references for the modern production and processing of MOC.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Magnolia , Zingiber officinale , Magnolia/química , Medicamentos de Ervas Chinesas/química , Compostos de Bifenilo/química , Lignanas/química
20.
J Colloid Interface Sci ; 650(Pt A): 67-80, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393769

RESUMO

Due to the complexity of tumors, multimodal therapy for them has always been of concern to researchers. How to design a multifunctional drug nanoplatform with cascade effect and capable of responding to specific stimuli in the tumor microenvironment is the key to achieve efficient multimodal synergistic therapy of cancer. Here, we prepare a kind of GNRs@SiO2@PDA-CuO2-l-Arg (GSPRs-CL) nanomotors for systematic treatment of tumor. First, under near-infrared (NIR) irradiation, GSPRs-CL can generate heat and exhibit excellent photothermal therapy effect. Then under acidic conditions, CuO2 can be decomposed to release Cu2+ and generate H2O2, which not only complemented the limited endogenous H2O2 in cells, but also further triggered Fenton-like reaction, converting H2O2 into •OH to kill cancer cells, thereby achieving chemodynamic therapy. Furthermore, both endogenous and exogenous H2O2 can release nitric oxide (NO) in response to the occurrence of l-Arg of nanomotors to enhance gas therapy. In addition, as a dual-mode drive, NIR laser and NO can promote the penetration ability of nanomotors at tumor sites. The experimental results in vivo show that the drug nanoplatform had good biosafety and significant tumor killing effect triggered by NIR light and acidic conditions of tumor. It provide a promising strategy for the development of advanced drug nanoplatform for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Dióxido de Silício/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Linhagem Celular Tumoral , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...