Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2310120, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647423

RESUMO

G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.

2.
Mol Cell ; 84(3): 570-583.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215752

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.


Assuntos
Antígenos CD , Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Adesão Celular , Microscopia Crioeletrônica , Complexo Glicoproteico GPIb-IX de Plaquetas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Antígenos CD/química , Antígenos CD/metabolismo
3.
Nat Commun ; 14(1): 7620, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993467

RESUMO

Hydroxycarboxylic acids are crucial metabolic intermediates involved in various physiological and pathological processes, some of which are recognized by specific hydroxycarboxylic acid receptors (HCARs). HCAR2 is one such receptor, activated by endogenous ß-hydroxybutyrate (3-HB) and butyrate, and is the target for Niacin. Interest in HCAR2 has been driven by its potential as a therapeutic target in cardiovascular and neuroinflammatory diseases. However, the limited understanding of how ligands bind to this receptor has hindered the development of alternative drugs able to avoid the common flushing side-effects associated with Niacin therapy. Here, we present three high-resolution structures of HCAR2-Gi1 complexes bound to four different ligands, one potent synthetic agonist (MK-6892) bound alone, and the two structures bound to the allosteric agonist compound 9n in conjunction with either the endogenous ligand 3-HB or niacin. These structures coupled with our functional and computational analyses further our understanding of ligand recognition, allosteric modulation, and activation of HCAR2 and pave the way for the development of high-efficiency drugs with reduced side-effects.


Assuntos
Niacina , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Niacina/farmacologia , Ligantes , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico
4.
Cell Res ; 33(8): 604-616, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221270

RESUMO

The dopaminergic system, including five dopamine receptors (D1R to D5R), plays essential roles in the central nervous system (CNS); and ligands that activate dopamine receptors have been used to treat many neuropsychiatric disorders, including Parkinson's Disease (PD) and schizophrenia. Here, we report cryo-EM structures of all five subtypes of human dopamine receptors in complex with G protein and bound to the pan-agonist, rotigotine, which is used to treat PD and restless legs syndrome. The structures reveal the basis of rotigotine recognition in different dopamine receptors. Structural analysis together with functional assays illuminate determinants of ligand polypharmacology and selectivity. The structures also uncover the mechanisms of dopamine receptor activation, unique structural features among the five receptor subtypes, and the basis of G protein coupling specificity. Our work provides a comprehensive set of structural templates for the rational design of specific ligands to treat CNS diseases targeting the dopaminergic system.


Assuntos
Doença de Parkinson , Receptores Dopaminérgicos , Humanos , Receptores Dopaminérgicos/metabolismo , Ligantes , Dopamina/metabolismo , Dopamina/uso terapêutico , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Genômica
5.
Science ; 380(6640): eadd6220, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36862765

RESUMO

Individual free fatty acids (FAs) play important roles in metabolic homeostasis, many through engagement with more than 40G protein-coupled receptors. Searching for receptors to sense beneficial omega-3 FAs of fish oil enabled the identification of GPR120, which is involved in a spectrum of metabolic diseases. Here, we report six cryo-electron microscopy structures of GPR120 in complex with FA hormones or TUG891 and Gi or Giq trimers. Aromatic residues inside the GPR120 ligand pocket were responsible for recognizing different double-bond positions of these FAs and connect ligand recognition to distinct effector coupling. We also investigated synthetic ligand selectivity and the structural basis of missense single-nucleotide polymorphisms. We reveal how GPR120 differentiates rigid double bonds and flexible single bonds. The knowledge gleaned here may facilitate rational drug design targeting to GPR120.


Assuntos
Desenho de Fármacos , Ácidos Graxos Ômega-3 , Receptores Acoplados a Proteínas G , Microscopia Crioeletrônica , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Humanos , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Conformação Proteica , Ácido Eicosapentaenoico/química , Ácido Eicosapentaenoico/metabolismo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
6.
Nat Commun ; 14(1): 519, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720854

RESUMO

Follicle stimulating hormone (FSH) is an essential glycoprotein hormone for human reproduction, which functions are mediated by a G protein-coupled receptor, FSHR. Aberrant FSH-FSHR signaling causes infertility and ovarian hyperstimulation syndrome. Here we report cryo-EM structures of FSHR in both inactive and active states, with the active structure bound to FSH and an allosteric agonist compound 21 f. The structures of FSHR are similar to other glycoprotein hormone receptors, highlighting a conserved activation mechanism of hormone-induced receptor activation. Compound 21 f formed extensive interactions with the TMD to directly activate FSHR. Importantly, the unique residue H6157.42 in FSHR plays an essential role in determining FSHR selectivity for various allosteric agonists. Together, our structures provide a molecular basis of FSH and small allosteric agonist-mediated FSHR activation, which could inspire the design of FSHR-targeted drugs for the treatment of infertility and controlled ovarian stimulation for in vitro fertilization.


Assuntos
Infertilidade , Receptores do FSH , Feminino , Humanos , Hormônio Foliculoestimulante , Hidrocortisona , Receptores do FSH/agonistas
7.
Nat Commun ; 13(1): 6670, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335102

RESUMO

The ability to couple with multiple G protein subtypes, such as Gs, Gi/o, or Gq/11, by a given G protein-coupled receptor (GPCR) is critical for many physiological processes. Over the past few years, the cryo-EM structures for all 15 members of the medically important class B GPCRs, all in complex with Gs protein, have been determined. However, no structure of class B GPCRs with Gq/11 has been solved to date, limiting our understanding of the precise mechanisms of G protein coupling selectivity. Here we report the structures of corticotropin releasing factor receptor 2 (CRF2R) bound to Urocortin 1 (UCN1), coupled with different classes of heterotrimeric G proteins, G11 and Go. We compare these structures with the structure of CRF2R in complex with Gs to uncover the structural differences that determine the selective coupling of G protein subtypes by CRF2R. These results provide important insights into the structural basis for the ability of CRF2R to couple with multiple G protein subtypes.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Urocortinas/metabolismo
9.
Nat Commun ; 13(1): 6276, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271004

RESUMO

The parathyroid hormone type 1 receptor (PTH1R), a class B1 G protein-coupled receptor, plays critical roles in bone turnover and Ca2+ homeostasis. Teriparatide (PTH) and Abaloparatide (ABL) are terms as long-acting and short-acting peptide, respectively, regarding their marked duration distinctions of the downstream signaling. However, the mechanistic details remain obscure. Here, we report the cryo-electron microscopy structures of PTH- and ABL-bound PTH1R-Gs complexes, adapting similar overall conformations yet with notable differences in the receptor ECD regions and the peptide C-terminal portions. 3D variability analysis and site-directed mutagenesis studies uncovered that PTH-bound PTH1R-Gs complexes display less motions and are more tolerant of mutations in affecting the receptor signaling than ABL-bound complexes. Furthermore, we combined the structural analysis and signaling assays to delineate the molecular basis of the differential signaling durations induced by these peptides. Our study deepens the mechanistic understanding of ligand-mediated prolonged or transient signaling.


Assuntos
Receptor Tipo 1 de Hormônio Paratireóideo , Teriparatida , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Teriparatida/farmacologia , Ligantes , Microscopia Crioeletrônica , Sequência de Aminoácidos , Hormônio Paratireóideo/farmacologia , Peptídeos/química , Receptores Acoplados a Proteínas G
10.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858343

RESUMO

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Fatores de Transcrição , Ácidos e Sais Biliares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Ácidos Cólicos/farmacologia , Microscopia Crioeletrônica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , beta-Arrestina 1/metabolismo
11.
Cell Discov ; 8(1): 55, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672283

RESUMO

The intestinal hormone and neuromodulator cholecystokinin (CCK) receptors CCK1R and CCK2R act as a signaling hub in brain-gut axis, mediating digestion, emotion, and memory regulation. CCK receptors exhibit distinct preferences for ligands in different posttranslational modification (PTM) states. CCK1R couples to Gs and Gq, whereas CCK2R primarily couples to Gq. Here we report the cryo-electron microscopy (cryo-EM) structures of CCK1R-Gs signaling complexes liganded either by sulfated cholecystokinin octapeptide (CCK-8) or a CCK1R-selective small-molecule SR146131, and CCK2R-Gq complexes stabilized by either sulfated CCK-8 or a CCK2R-selective ligand gastrin-17. Our structures reveal a location-conserved yet charge-distinct pocket discriminating the effects of ligand PTM states on receptor subtype preference, the unique pocket topology underlying selectivity of SR146131 and gastrin-17, the conformational changes in receptor activation, and key residues contributing to G protein subtype specificity, providing multiple structural templates for drug design targeting the brain-gut axis.

12.
Mol Cell ; 82(14): 2681-2695.e6, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35714614

RESUMO

Serotonin (or 5-hydroxytryptamine, 5-HT) is an important neurotransmitter that activates 12 different G protein-coupled receptors (GPCRs) through selective coupling of Gs, Gi, or Gq proteins. The structural basis for G protein subtype selectivity by these GPCRs remains elusive. Here, we report the structures of the serotonin receptors 5-HT4, 5-HT6, and 5-HT7 with Gs, and 5-HT4 with Gi1. The structures reveal that transmembrane helices TM5 and TM6 alternate lengths as a macro-switch to determine receptor's selectivity for Gs and Gi, respectively. We find that the macro-switch by the TM5-TM6 length is shared by class A GPCR-G protein structures. Furthermore, we discover specific residues within TM5 and TM6 that function as micro-switches to form specific interactions with Gs or Gi. Together, these results present a common mechanism of Gs versus Gi protein coupling selectivity or promiscuity by class A GPCRs and extend the basis of ligand recognition at serotonin receptors.


Assuntos
Receptores Acoplados a Proteínas G , Serotonina , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
14.
Cell Discov ; 8(1): 44, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570218

RESUMO

Chemokine receptors are a family of G-protein-coupled receptors with key roles in leukocyte migration and inflammatory responses. Here, we present cryo-electron microscopy structures of two human CC chemokine receptor-G-protein complexes: CCR2 bound to its endogenous ligand CCL2, and CCR3 in the apo state. The structure of the CCL2-CCR2-G-protein complex reveals that CCL2 inserts deeply into the extracellular half of the transmembrane domain, and forms substantial interactions with the receptor through the most N-terminal glutamine. Extensive hydrophobic and polar interactions are present between both two chemokine receptors and the Gα-protein, contributing to the constitutive activity of these receptors. Notably, complemented with functional experiments, the interactions around intracellular loop 2 of the receptors are found to be conserved and play a more critical role in G-protein activation than those around intracellular loop 3. Together, our findings provide structural insights into chemokine recognition and receptor activation, shedding lights on drug design targeting chemokine receptors.

15.
Nat Commun ; 13(1): 300, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027551

RESUMO

Much effort has been invested in the investigation of the structural basis of G protein-coupled receptors (GPCRs) activation. Inverse agonists, which can inhibit GPCRs with constitutive activity, are considered useful therapeutic agents, but the molecular mechanism of such ligands remains insufficiently understood. Here, we report a crystal structure of the ghrelin receptor bound to the inverse agonist PF-05190457 and a cryo-electron microscopy structure of the active ghrelin receptor-Go complex bound to the endogenous agonist ghrelin. Our structures reveal a distinct binding mode of the inverse agonist PF-05190457 in the ghrelin receptor, different from the binding mode of agonists and neutral antagonists. Combining the structural comparisons and cellular function assays, we find that a polar network and a notable hydrophobic cluster are required for receptor activation and constitutive activity. Together, our study provides insights into the detailed mechanism of ghrelin receptor binding to agonists and inverse agonists, and paves the way to design specific ligands targeting ghrelin receptors.


Assuntos
Receptores de Grelina/agonistas , Receptores de Grelina/antagonistas & inibidores , Microscopia Crioeletrônica , Cristalografia por Raios X , Grelina/agonistas , Grelina/genética , Humanos , Ligantes , Mutação , Ligação Proteica , Receptores de Grelina/genética
16.
Nat Chem Biol ; 18(3): 264-271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949837

RESUMO

Biased signaling of G protein-coupled receptors describes an ability of different ligands that preferentially activate an alternative downstream signaling pathway. In this work, we identified and characterized different N-terminal truncations of endogenous chemokine CCL15 as balanced or biased agonists targeting CCR1, and presented three cryogenic-electron microscopy structures of the CCR1-Gi complex in the ligand-free form or bound to different CCL15 truncations with a resolution of 2.6-2.9 Å, illustrating the structural basis of natural biased signaling that initiates an inflammation response. Complemented with pharmacological and computational studies, these structures revealed it was the conformational change of Tyr291 (Y2917.43) in CCR1 that triggered its polar network rearrangement in the orthosteric binding pocket and allosterically regulated the activation of ß-arrestin signaling. Our structure of CCL15-bound CCR1 also exhibited a critical site for ligand binding distinct from many other chemokine-receptor complexes, providing new insights into the mode of chemokine recognition.


Assuntos
Proteínas de Ligação ao GTP , Receptores de Quimiocinas , Quimiocinas/metabolismo , Quimiocinas/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/metabolismo , beta-Arrestinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599099

RESUMO

Alternative splicing of G protein-coupled receptors has been observed, but their functions are largely unknown. Here, we report that a splice variant (SV1) of the human growth hormone-releasing hormone receptor (GHRHR) is capable of transducing biased signal. Differing only at the receptor N terminus, GHRHR predominantly activates Gs while SV1 selectively couples to ß-arrestins. Based on the cryogenic electron microscopy structures of SV1 in the apo state or GHRH-bound state in complex with the Gs protein, molecular dynamics simulations reveal that the N termini of GHRHR and SV1 differentiate the downstream signaling pathways, Gs versus ß-arrestins. As suggested by mutagenesis and functional studies, it appears that GHRH-elicited signal bias toward ß-arrestin recruitment is constitutively mediated by SV1. The level of SV1 expression in prostate cancer cells is also positively correlated with ERK1/2 phosphorylation but negatively correlated with cAMP response. Our findings imply that constitutive signal bias may be a mechanism that ensures cancer cell proliferation.


Assuntos
Processamento Alternativo/genética , Variação Genética/genética , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Cultivadas , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Células PC-3 , Células Sf9 , Transdução de Sinais/genética , beta-Arrestinas/genética
18.
Nature ; 598(7882): 688-692, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34552239

RESUMO

Luteinizing hormone and chorionic gonadotropin are glycoprotein hormones that are related to follicle-stimulating hormone and thyroid-stimulating hormone1,2. Luteinizing hormone and chorionic gonadotropin are essential to human reproduction and are important therapeutic drugs3-6. They activate the same G-protein-coupled receptor, luteinizing hormone-choriogonadotropin receptor (LHCGR), by binding to the large extracellular domain3. Here we report four cryo-electron microscopy structures of LHCGR: two structures of the wild-type receptor in the inactive and active states; and two structures of the constitutively active mutated receptor. The active structures are bound to chorionic gonadotropin and the stimulatory G protein (Gs), and one of the structures also contains Org43553, an allosteric agonist7. The structures reveal a distinct 'push-and-pull' mechanism of receptor activation, in which the extracellular domain is pushed by the bound hormone and pulled by the extended hinge loop next to the transmembrane domain. A highly conserved 10-residue fragment (P10) from the hinge C-terminal loop at the interface between the extracellular domain and the transmembrane domain functions as a tethered agonist to induce conformational changes in the transmembrane domain and G-protein coupling. Org43553 binds to a pocket of the transmembrane domain and interacts directly with P10, which further stabilizes the active conformation. Together, these structures provide a common model for understanding the signalling of glycoprotein hormone receptors and a basis for drug discovery for endocrine diseases.


Assuntos
Receptores do LH/química , Gonadotropina Coriônica/química , Microscopia Crioeletrônica , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
19.
Cell Res ; 31(11): 1163-1175, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433901

RESUMO

Melanocortin-4 receptor (MC4R) plays a central role in the regulation of energy homeostasis. Its high sequence similarity to other MC receptor family members, low agonist selectivity and the lack of structural information concerning MC4R-specific activation have hampered the development of MC4R-seletive therapeutics to treat obesity. Here, we report four high-resolution structures of full-length MC4R in complex with the heterotrimeric Gs protein stimulated by the endogenous peptide ligand α-MSH, FDA-approved drugs afamelanotide (Scenesse™) and bremelanotide (Vyleesi™), and a selective small-molecule ligand THIQ, respectively. Together with pharmacological studies, our results reveal the conserved binding mode of peptidic agonists, the distinctive molecular details of small-molecule agonist recognition underlying receptor subtype selectivity, and a distinct activation mechanism for MC4R, thereby offering new insights into G protein coupling. Our work may facilitate the discovery of selective therapeutic agents targeting MC4R.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Sequência de Aminoácidos , Humanos , Ligantes , Receptor Tipo 4 de Melanocortina/química
20.
Sci Adv ; 7(14)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811074

RESUMO

Selective modulation of the heterotrimeric G protein α S subunit-coupled prostaglandin E2 (PGE2) receptor EP2 subtype is a promising therapeutic strategy for osteoporosis, ocular hypertension, neurodegenerative diseases, and cardiovascular disorders. Here, we report the cryo-electron microscopy structure of the EP2-Gs complex with its endogenous agonist PGE2 and two synthesized agonists, taprenepag and evatanepag (CP-533536). These structures revealed distinct features of EP2 within the EP receptor family in terms of its unconventional receptor activation and G protein coupling mechanisms, including activation in the absence of a typical W6.48 "toggle switch" and coupling to Gs via helix 8. Moreover, inspection of the agonist-bound EP2 structures uncovered key motifs governing ligand selectivity. Our study provides important knowledge for agonist recognition and activation mechanisms of EP2 and will facilitate the rational design of drugs targeting the PGE2 signaling system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...