Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Int J Mol Med ; 53(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38695222

RESUMO

Inflammatory bowel disease (IBD) is marked by persistent inflammation, and its development and progression are linked to environmental, genetic, immune system and gut microbial factors. DNA methylation (DNAm), as one of the protein modifications, is a crucial epigenetic process used by cells to control gene transcription. DNAm is one of the most common areas that has drawn increasing attention recently, with studies revealing that the interleukin (IL)­23/IL­12, wingless­related integration site, IL­6­associated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3 and apoptosis signaling pathways are involved in DNAm and in the pathogenesis of IBD. It has emerged that DNAm­associated genes are involved in perpetuating the persistent inflammation that characterizes a number of diseases, including IBD, providing a novel therapeutic strategy for exploring their treatment. The present review discusses DNAm­associated genes in the pathogenesis of IBD and summarizes their application as possible diagnostic, prognostic and therapeutic biomarkers in IBD. This may provide a reference for the particular form of IBD and its related methylation genes, aiding in clinical decision­making and encouraging therapeutic alternatives.


Assuntos
Metilação de DNA , Doenças Inflamatórias Intestinais , Humanos , Metilação de DNA/genética , Doenças Inflamatórias Intestinais/genética , Epigênese Genética , Animais , Biomarcadores , Transdução de Sinais/genética
2.
Aging (Albany NY) ; 162024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713159

RESUMO

BACKGROUND: Stratifying patient risk and exploring the tumor microenvironment are critical endeavors in prostate cancer research, essential for advancing our understanding and management of this disease. METHODS: Single-cell sequencing data for prostate cancer were sourced from the pradcellatlas website, while bulk transcriptome data were obtained from the TCGA database. Dimensionality reduction cluster analysis was employed to investigate heterogeneity in single-cell sequencing data. Gene set enrichment analysis, utilizing GO and KEGG pathways, was conducted to explore functional aspects. Weighted gene coexpression network analysis (WGCNA) identified key gene modules. Prognostic models were developed using Cox regression and LASSO regression techniques, implemented in R software. Validation of key gene expression levels was performed via PCR assays. RESULTS: Through integrative analysis of single-cell and bulk transcriptome data, key genes implicated in prostate cancer pathogenesis were identified. A prognostic model focused on sphingolipid metabolism (SRSR) was constructed, comprising five genes: "FUS," "MARK3," "CHTOP," "ILF3," and "ARIH2." This model effectively stratified patients into high-risk and low-risk groups, with the high-risk cohort exhibiting significantly poorer prognoses. Furthermore, distinct differences in the immune microenvironment were observed between these groups. Validation of key gene expression, exemplified by ILF3, was confirmed through PCR analysis. CONCLUSION: This study contributes to our understanding of the role of sphingolipid metabolism in prostate cancer diagnosis and treatment. The identified prognostic model holds promise for improving risk stratification and patient outcomes in clinical settings.

3.
Front Pharmacol ; 15: 1383203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666028

RESUMO

Ferroptosis is an emerging mode of programmed cell death fueled by iron buildup and lipid peroxidation. Recent evidence points to the function of ferroptosis in the aetiology and development of cancer and other disorders. Consequently, harnessing iron death for disease treatment has diverted the interest of the researchers in the field of basic and clinical research. The ubiquitin-proteasome system (UPS) represents a primary protein degradation pathway in eukaryotes. It involves labelling proteins to be degraded by ubiquitin (Ub), followed by recognition and degradation by the proteasome. Dysfunction of the UPS can contribute to diverse pathological processes, emphasizing the importance of maintaining organismal homeostasis. The regulation of protein stability is a critical component of the intricate molecular mechanism underlying iron death. Moreover, the intricate involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for targeted treatment strategies. Besides, it highlights the potential of ferroptosis as a promising target for cancer therapy, emphasizing the combination between ferroptosis and the UPS. The molecular mechanisms underlying ferroptosis, including key regulators such as glutathione peroxidase 4 (GPX4), cysteine/glutamate transporter (system XC-), and iron metabolism, are thoroughly examined, alongside the role of the UPS in modulating the abundance and activity of crucial proteins for ferroptotic cell death, such as GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2). As a pivotal regulatory system for macromolecular homeostasis, the UPS substantially impacts ferroptosis by directly or indirectly modulating iron death-related molecules or associated signaling pathways. This review explores the involvement of the UPS in regulating iron death-related molecules and signaling pathways, providing valuable insights for the targeted treatment of diseases associated with ferroptosis.

4.
Mol Biotechnol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683442

RESUMO

Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.

5.
J Med Chem ; 67(7): 5783-5799, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38526960

RESUMO

Neutrophil-mediated immunotherapy is a promising strategy for treating Candida albicans infection due to its potential in dealing with drug-resistant events. Our previous study found that ACT001 exhibited good antifungal immunotherapeutic activity by inhibiting PD-L1 expression in neutrophils, but its strong cytotoxicity and high BBB permeability hindered its antifungal application. To address these deficiencies, a series of novel sulfide derivatives were designed and synthesized based on a slow-release prodrug strategy. Among these derivatives, compound 16 exhibited stronger inhibition of PD-L1 expression, less cytotoxicity to neutrophils, and lower BBB permeability than ACT001. Compound 16 also significantly enhanced neutrophil-mediated antifungal immunity in C. albicans infected mice, with acceptable pharmacokinetic properties and good oral safety. Moreover, pharmacological mechanism studies demonstrated that ACT001 and compound 16 reduced PD-L1 expression in neutrophils by directly targeting STAT3. Briefly, this study provided a novel prototype compound 16 which exhibited great potential in neutrophil-mediated antifungal immunotherapy.


Assuntos
Antifúngicos , Furanos , Neutrófilos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Neutrófilos/metabolismo , Antígeno B7-H1 , Reposicionamento de Medicamentos , Candida albicans/metabolismo
6.
Phys Chem Chem Phys ; 26(14): 11078-11083, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529830

RESUMO

The electronic and magnetic properties of d0 dilute magnetic semiconductors formed by rock-salt structured magnesium oxide (MgO) doped with C are systematically studied based on first-principles calculations and the Ising model. It is shown that the electronic holes of p states are generated due to the impurity carbon replacing oxygen in MgO, and the magnetic moment of 2µB is introduced by each C impurity. The polarization energy and formation energy of C-doped MgO are calculated, and the magnetization energy of C-doped MgO is also calculated which is used to obtain the exchange constant between C impurities. By means of the Ising model, we simulated the magnetization and the susceptibility of the doped system with increasing temperature and obtained the Curie temperature of C-doped MgO.

7.
Adv Sci (Weinh) ; 11(15): e2304203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342610

RESUMO

Tumors often overexpress glucose-regulated proteins, and agents that interfere with the production or activity of these proteins may represent novel cancer treatments. The chlorpromazine derivative JX57 exhibits promising effects against endometrial cancer with minimal extrapyramidal side effects; however, its mechanisms of action are currently unknown. Here, glucose-regulated protein 75 kD (GRP75) is identified as a direct target of JX57 using activity-based protein profiling and loss-of-function experiments. The findings show that GRP75 is necessary for the biological activity of JX57, as JX57 exhibits moderate anticancer properties in GRP75-deficient cancer cells, both in vitro and in vivo. High GRP75 expression is correlated with poor differentiation and poor survival in patients with endometrial cancer, whereas the knockdown of GRP75 can significantly suppress tumor growth. Mechanistically, the direct binding of JX57 to GRP75 impairs the structure of the mitochondria-associated endoplasmic reticulum membrane and disrupts the endoplasmic reticulum-mitochondrial calcium homeostasis, resulting in a mitochondrial energy crisis and AMP-activated protein kinase activation. Taken together, these findings highlight GRP75 as a potential prognostic biomarker and direct therapeutic target in endometrial cancer and suggest that the chlorpromazine derivative JX57 can potentially be a new therapeutic option for endometrial cancer.


Assuntos
Proteínas Quinases Ativadas por AMP , Neoplasias do Endométrio , Proteínas de Choque Térmico HSP70 , Proteínas de Membrana , Feminino , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Mitocôndrias/metabolismo
8.
Acta Pharm Sin B ; 14(2): 729-750, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322326

RESUMO

Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.

9.
Sci Rep ; 14(1): 3175, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326642

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as one of the major causes of liver-related morbidity and mortality globally. It ranges from simple steatosis to non-alcoholic steatohepatitis (NASH) characterized by ballooning and hepatic inflammation. In the past few years, pyroptosis has been shown as a type of programmed cell death that triggers inflammation and plays a role in the development of NASH. However, the roles of pyroptosis-related genes (PRGs) in NASH remained unclear. In this study, we studied the expression level of pyroptosis-related genes (PRGs) in NASH and healthy controls, developed a diagnostic model of NASH based on PRGs and explored the pathological mechanisms associated with pyroptosis. We further compared immune status between NASH and healthy controls, analyzed immune status in different subtypes of NASH. We identified altogether twenty PRGs that were differentially expressed between NASH and normal liver tissues. Then, a novel diagnostic model consisting of seven PRGs including CASP3, ELANE, GZMA, CASP4, CASP9, IL6 and TP63 for NASH was constructed with an area under the ROC curve (AUC) of 0.978 (CI 0.965-0.99). Obvious variations in immune status between healthy controls and NASH cases were detected. Subsequently, the consensus clustering method based on differentially expressed PRGs was constructed to divide all NASH cases into two distinct pyroptosis subtypes with different immune and biological characteristics. Pyroptosis-related genes may play an important role in NASH and can provide new insights into the diagnosis and underlying mechanisms of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Piroptose/genética , Inflamação/patologia
10.
Theranostics ; 14(2): 640-661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169587

RESUMO

Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.


Assuntos
Neoplasias , Morte Celular Regulada , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Apoptose , Morte Celular
11.
Mol Carcinog ; 63(4): 563-576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38085124

RESUMO

Oral squamous cell carcinoma is the predominant subtype of head and neck squamous cell carcinoma, characterized by a challenging prognosis. In this study, we established a murine model of oral carcinogenesis using 4-nitroquinoline-1-oxide (4-NQO) induction to investigate the impact of immunotherapy on microenvironmental alterations. Mice in the precancerous condition were randomly divided into two groups: one receiving programmed death-1 (PD1) monoclonal antibody treatment and the other, control immunoglobulin G. Our observations showed that while PD1 blockade effectively delayed the progression of carcinogenesis, it did not completely impede or reverse it. To unravel the underlying reasons for the limited effectiveness of PD1 blockade, we collected tongue lesions and applied mass cytometry (CyTOF) and RNA sequencing (RNA-seq) to characterize the microenvironment. CyTOF analysis revealed an increased macrophage subset (expressing high levels of IFNγ and iNOS) alongside a diminished Th1-like subset (exhibiting low expression of TCF7) and three myeloid-derived suppressor cell subsets (displaying low expression of MHC Class II or IFNγ) following anti-PD1 treatment. Notably, we observed an increased presence of cancer-associated fibroblasts (CAFs) expressing collagen-related genes after PD1 blockade. Furthermore, we found a negative correlation between the infiltration levels of CAFs and CD8+ T cells. These findings were validated in murine tongue tissue slides, and publicly available multi-omics datasets. Our results suggest that CAFs may impair the therapeutic efficacy of PD1 blockade in oral carcinogenesis by the remodeling of the extracellular matrix.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Camundongos , Animais , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/genética , Linfócitos T CD8-Positivos , Carcinogênese , Carcinoma de Células Escamosas de Cabeça e Pescoço , Perfilação da Expressão Gênica , Microambiente Tumoral
12.
J Chemother ; 36(3): 238-248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37916436

RESUMO

Pacritinib is an oral medication that inhibits several kinases including JAK2, FLT3, IRAK and STAT3. It has been recently approved to treat patients with thrombocytopenia and myelofibrosis. Studies are currently exploring the potential use of pacritinib in treating other types of cancer such as leukaemia, breast cancer and prostate cancer. Our study aimed to investigate the effects of pacritinib alone and its combination with standard of care in renal cell carcinoma (RCC). We showed that pacritinib dose-dependently decreased viability of RCC cells, with IC50 at nanomolar or low micromolar concentration rage. Pacritinib inhibited cell proliferation, decreased colony formation, and increased apoptosis. Interestingly, pacritinib exhibited synergistic effects when combined with temsirolimus and sunitinib, but antagonistic effects when combined with doxorubicin, in a panel of RCC cell lines. We also confirmed that the combination of pacritinib with temsirolimus and sunitinib resulted in synergistic effects in RCC mouse models, with complete inhibition of tumour growth throughout the treatment period. Mechanistic studies indicated that the inhibition of JAK2, but not IRAK, was the main contributor to the anti-RCC activity of pacritinib. Our study is the first to demonstrate that pacritinib shows promise as a treatment option for RCC and underscores the therapeutic potential of targeting the JAK2/STAT signalling pathway in RCC.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Carcinoma de Células Renais , Neoplasias Renais , Pirimidinas , Sirolimo/análogos & derivados , Masculino , Animais , Camundongos , Humanos , Sunitinibe/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Janus Quinase 2
13.
Aging (Albany NY) ; 15(24): 15114-15133, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38127056

RESUMO

BACKGROUND: Gastric cancer is a prevalent type of tumor with a poor prognosis. Given the high occurrence of genomic instability in gastric cancer, it is essential to investigate the prognostic significance of genes associated with genomic instability in this disease. METHODS: We identified genomic instability-related lncRNAs (GInLncRNAs) by analyzing somatic mutation and transcriptome profiles. We evaluated co-expression and enrichment using various analyses, including univariate COX analysis and LASSO regression. Based on these findings, we established an lncRNA signature associated with genomic instability, which we subsequently assessed for prognostic value, immune cell and checkpoint analysis, drug sensitivity, and external validation. Finally, PCR assay was used to verify the expression of key lncRNAs. RESULTS: Our study resulted in the establishment of a seven-lncRNA prognostic signature, including PTENP1-AS, LINC00163, RP11-169F17.1, C8ORF87, RP11-389G6.3, LINCO1210, and RP11-115H13.1. This signature exhibited independent prognostic value and was associated with specific immune cells and checkpoints in gastric cancer. Additionally, the model was correlated with somatic mutation and several chemotherapeutic drugs. We further confirmed the prognostic value of LINC00163, which was included in our model, in an independent dataset. Our model demonstrated superior performance compared to other models. PCR showed that LINC00163 was significantly up-regulated in 4 adjacent normal tissues compared with the GC tissues. CONCLUSIONS: Our study resulted in the establishment of a seven-lncRNA signature associated with genomic instability, which demonstrated robust prognostic value in predicting the prognosis of gastric cancer. The signature also identified potential chemotherapeutic drugs, making it a valuable tool for clinical decision-making and medication use.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Estimativa de Kaplan-Meier , Prognóstico , Transcriptoma , Instabilidade Genômica
14.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37850650

RESUMO

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Assuntos
Plantas , Fatores de Transcrição , Vocabulário , Cromatina , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética
15.
Front Endocrinol (Lausanne) ; 14: 1242991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37881499

RESUMO

Inflammatory bowel disease (IBD) has been referred to as the "green cancer," and its progression to colorectal cancer (CRC) poses a significant challenge for the medical community. A common factor in their development is glycolysis, a crucial metabolic mechanism of living organisms, which is also involved in other diseases. In IBD, glycolysis affects gastrointestinal components such as the intestinal microbiota, mucosal barrier function, and the immune system, including macrophages, dendritic cells, T cells, and neutrophils, while in CRC, it is linked to various pathways, such as phosphatidylinositol-3-kinase (PI3K)/AKT, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and transcription factors such as p53, Hypoxia-inducible factor (HIF), and c-Myc. Thus, a comprehensive study of glycolysis is essential for a better understanding of the pathogenesis and therapeutic targets of both IBD and CRC. This paper reviews the role of glycolysis in diseases, particularly IBD and CRC, via its effects on the intestinal microbiota, immunity, barrier integrity, signaling pathways, transcription factors and some therapeutic strategies targeting glycolytic enzymes.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Humanos , Transdução de Sinais , Neoplasias Colorretais/etiologia , Fatores de Transcrição , Glicólise
16.
Adv Exp Med Biol ; 1433: 15-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751134

RESUMO

Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.


Assuntos
Lisina , Neoplasias , Humanos , Histonas , Neoplasias/tratamento farmacológico , Neoplasias/genética , Histona Desmetilases/genética , Histona Desmetilases/química , Histona Desmetilases/metabolismo
17.
Eur J Med Res ; 28(1): 319, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660064

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a global disease with a growing public health concern and is associated with a complex interplay of factors, including the microbiota and immune system. Resveratrol, a natural anti-inflammatory and antioxidant agent, is known to relieve IBD but the mechanism involved is largely unexplored. METHODS: This study examines the modulatory effect of resveratrol on intestinal immunity, microbiota, metabolites, and related functions and pathways in the BALB/c mice model of IBD. Mouse RAW264.7 macrophage cell line was used to further explore the involvement of the macrophage-arginine metabolism axis. The treatment outcome was assessed through qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and fecal 16S rDNA sequencing and UHPLC/Q-TOF-MS. RESULTS: Results showed that resveratrol treatment significantly reduced disease activity index (DAI), retained mice weight, repaired colon and spleen tissues, upregulated IL-10 and the tight junction proteins Occludin and Claudin 1, and decreased pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. Resveratrol reduced the number of dysregulated metabolites and improved the gut microbial community structure and diversity, including reversing changes in the phyla Bacteroidetes, Proteobacteria, and Firmicutes, increasing 'beneficial' genera, and decreasing potential pathogens such as Lachnoclostridium, Acinobacter, and Serratia. Arginine-proline metabolism was significantly different between the colitis-treated and untreated groups. In the colon mucosa and RAW264.7 macrophage, resveratrol regulated arginine metabolism towards colon protection by increasing Arg1 and Slc6a8 and decreasing iNOS. CONCLUSION: This uncovers a previously unknown mechanism of resveratrol treatment in IBD and provides the microbiota-macrophage-arginine metabolism axis as a potential therapeutic target for intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Resveratrol/farmacologia , Macrófagos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Arginina
18.
Anim Reprod Sci ; 256: 107306, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541020

RESUMO

The process of testis development in mammals is accompanied by the proliferation and maturation of Sertoli, Leydig and germ cells. Spermatogenesis depends on hormone regulation, which must bind to a receptor to exert its biological effects. The changes in Hu sheep testis cell composition and FSHR, LHR and AR expression during different developmental stages are unclear (newborn, puberty and adulthood). To address this, using single-cell RNA sequencing, we analyzed testis cell composition and hormone receptor expression changes during three important developmental stages of Hu sheep. We observed significant changes in the composition of somatic and germ cells in different Hu sheep testis developmental stages. Furthermore, we analyzed the FSHR, LHR and AR distribution and expression changes at three important periods and verified them by qRT-PCR and immunofluorescence. Our results suggest that after birth, the proportion of germ cells increased gradually, peaking in adulthood; the proportion of Sertoli cells decreased gradually, reaching the lowest in adulthood; and the proportion of Leydig cells increased and then decreased, reaching the lowest in adulthood. In addition, FSHR, LHR and AR are mainly located in Sertoli, Leydig and germ cells. LHR and FSHR expression decreased with increasing age, while AR expression increased and then decreased with increasing age.


Assuntos
Receptores do FSH , Testículo , Masculino , Animais , Ovinos , Testículo/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Células Intersticiais do Testículo/metabolismo , Células de Sertoli/metabolismo , Hormônios/metabolismo , Mamíferos
19.
Anticancer Agents Med Chem ; 23(18): 2027-2034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37581518

RESUMO

AIMS: More effective treatment options for patients with renal cell carcinoma (RCC) are needed, in particular advanced RCC. BACKGROUND: Sunitinib, a multitarget tyrosine kinase inhibitor, is a first-line treatment of metastatic RCC. However, the management of sunitinib-induced adverse events and resistance is complex. In hematological malignancies, effective targeting of anti-apoptotic proteins such as Bcl-2 has been achieved, but limited progress has been made in solid tumors. OBJECTIVE: This work systematically investigated the therapeutic potential of the combination of sunitinib and venetoclax, a Bcl-2 inhibitor, in preclinical RCC models. METHODS: Quantitative analysis of drug interactions was performed. Cell viability was examined after drug treatment or Bcl-2 siRNA depletion. RCC xenograft mouse model was applied to validate the efficacy of sunitinib and venetoclax. RESULTS: A strong synergistic interaction between sunitinib and venetoclax was observed across a range of different dose levels in all tested RCC cell lines. Sequential treatment studies show that the sequential addition of venetoclax and then sunitinib is superior to concurrent treatment and the sequential addition of sunitinib and then venetoclax in decreasing RCC cell viability. The sensitivity of RCC cell lines to venetoclax treatment negatively correlates with their Bcl-2 levels. Specific depletion of Bcl-2 mimics the synergistic effects of venetoclax with sunitinib. Treatment of mice implanted with high Bcl-2-expressing RCC cells reveals that a combination of venetoclax and sunitinib at a non-toxic dose displays complete regression of tumor growth throughout the whole duration of treatment. CONCLUSION: Our work demonstrates that inhibiting Bcl-2 by venetoclax synergistically enhances sunitinib's efficacy in RCC. Venetoclax holds great potential as a viable option for clinical use.

20.
Gastric Cancer ; 26(6): 904-917, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572185

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS: The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS: GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS: PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.


Assuntos
Adenocarcinoma , PPAR delta , Neoplasias Gástricas , Humanos , Animais , Camundongos , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , PPAR delta/genética , Linfócitos T CD8-Positivos , Microambiente Tumoral , Carcinogênese , Receptores CCR6/genética , Receptores CCR6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...