Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(7): 3126-3139, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38344938

RESUMO

BACKGROUND: Spodoptera litura is one of the most harmful lepidoptera pests in China, and is difficult to control due to its strong resistance to the current frequently used insecticide species. The requirement to develop pesticides with novel toxicology mechanisms to control S. litura is urgent. The quassinoid of bruceine D display outstanding systemic properties and strong insecticidal activity against S. litura, which possess notable application potential for integrative management of S. litura, but the mechanism of toxicity remains unclear. RESULTS: In this study, we found that bruceine D exerts potent growth inhibitory activity against S. litura, disrupting the ecdysone and juvenile hormone titers, and causing long-term adverse effects. Association analysis between transcriptomics and metabolomics suggested that bruceine D affected the digestion and absorption capacity of S. litura larvae by inducing a strong oxidative stress response and cell apoptosis in the intestine. Further analysis demonstrated that bruceine D can inhibit the activities of digestive and antioxidant enzymes and induce malondialdehyde (MDA) and reactive oxygen species (ROS) overaccumulation in the midgut. Moreover, the protein level of Bax, cleavage caspase 3, and cytochrome c expressed in cytoplasm (cyto) were up-regulated by bruceine D, while Bcl-2 and cytochrome c expressed in mitochondria (mito) were down-regulated. In addition, there was a noticeable increase in caspase-3 protease activity. Histopathological observations revealed that bruceine D damages the structure of midgut epithelial cells and activates lysosomes, which subsequently disrupts the midgut tissue. CONCLUSION: Overall, our findings suggested that bruceine D induced excessive ROS accumulation in midgut epithelial cells. The resulting cell apoptosis disrupted midgut tissue, leading ultimately to reduced nutrient digestion and absorption in the midgut and the inhibition of larval growth. © 2024 Society of Chemical Industry.


Assuntos
Apoptose , Inseticidas , Larva , Spodoptera , Animais , Spodoptera/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Apoptose/efeitos dos fármacos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Quassinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
2.
Plant Physiol Biochem ; 196: 210-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36724705

RESUMO

As a well-recognized traditional Chinese medicine (TCM), immature fruits of Citrus grandis 'Tomentosa' (CGT) serve to cure chronic cough in humans. Specialized metabolites including flavonoids may have contribute to this curing effect. Knowledge about the molecular mechanisms underlying flavonoid biosynthesis in 'Tomentosa' fruits will, therefore, support the breeding of varieties with improved medicinal properties. Hence, we profiled the transcriptomes and metabolites of the fruits of two contrasting C. grandis varieties, namely 'Zheng-Mao' ('ZM') used in TCM production, and a locally cultivated pomelo, namely 'Guang-Qing' ('GQ'), at four developmental stages. A total of 39 flavonoids, including 14 flavanone/flavone, 5 isoflavonoids, 12 flavonols, and 6 anthocyanins, were identified, and 16 of which were quantitatively determined in the fruits of the two varieties. We found that 'ZM' fruits contain more flavonoids than 'GQ'. Specifically, rhoifolin levels were significantly higher in 'ZM' than in 'GQ'. We annotated 31,510 genes, including 1,387 previously unknown ones, via transcriptome sequencing of 'ZM' and 'GQ.' A total of 646 genes were found to be differentially expressed between 'ZM' and 'GQ' throughout at all four fruit developmental stages, indicating that they are robust expression markers for future breeding programs. Weighted gene co-expression network analysis identified 18 modules. Combined transcriptional and metabolic analysis revealed 25 genes related to flavonoid biosynthesis and 16 transcriptional regulators (MYBs, bHLHs, WD40) that may be involved in the flavonoids biosynthesis in C. grandis 'Tomentosa' fruits.


Assuntos
Citrus , Transcriptoma , Humanos , Transcriptoma/genética , Frutas/genética , Frutas/química , Citrus/genética , Antocianinas , Melhoramento Vegetal , Flavonoides/análise
3.
Ecotoxicol Environ Saf ; 246: 114153, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252515

RESUMO

Citric acid content is a critical quality determinant in citrus (Citrus spp.) fruits. Although arsenic (As) can effectively reduce citric acid content to improve citrus fruit quality, it can have adverse environmental effects. The discovery of nontoxic substitutes is hampered by the incomplete elucidation of the underlying mechanisms of As action in citrus fruits. Metabolic, transcriptomic, and physiological analyses were employed to investigate As action on citric acid accumulation to discover the mechanisms of As action in citrus. The enzyme activity related to citrate biosynthesis was not inhibited and the content of the involved metabolites was not reduced in As-treated fruits. However, the proton pump genes CitPH5 and CitPH1 control the vacuolar citric acid accumulation and transcription factor genes CitTT8 and CitMYB5, which regulate CitPH5 and CitPH1, were downregulated. The oxidative stress-response genes were upregulated in As-treated fruits. The reactive oxygen species (ROS) treatment also downregulated CitTT8 and CitMYB5 in juice cells. The mitochondrial ROS production rate increased in As-treated fruits. AsIII was more potent in stimulating isolated mitochondria to overproduce ROS compared to AsV. Our results indicate that the As inhibition of citric acid accumulation may be primarily due to the transcriptional downregulation of CitPH5, CitPH1, CitTT8, and CitMYB5. As-induced oxidative stress signaling may operate upstream to downregulate these acid regulator genes. Mitochondrial thiol proteins may be the principal targets of As action in citrus fruits.


Assuntos
Arsênio , Citrus , Citrus/genética , Citrus/metabolismo , Ácido Cítrico/metabolismo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas , Expressão Gênica , Regulação da Expressão Gênica de Plantas
4.
Insects ; 13(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36292866

RESUMO

The oriental fruit fly Bactrocera dorsalis (Hendel) is a destructive polyphagous species that targets many economically important fruits and vegetables. The primary control of B. dorsalis relies mainly on the use of synthetic chemicals, and excessive use of these chemicals has adverse effects on both the environment and human health. Environmentally friendly management of pests involving plant essential oils is useful for controlling the populations of pests responsible for decreasing the yields and quality of crops. In the present study, we demonstrate that clove bud essential oil (CBEO) is strongly attractive to sexually mature males. Mature males responded to the CBEO differently throughout the day; the strongest response was elicited during the day and decreased at dusk. Virgin and mated mature males did not respond differently to CBEO. No obvious response behaviour to the CBEO was observed in two species of beneficial natural predator ladybirds. In addition, a cytotoxicity assessment demonstrated that CBEO is nontoxic to normal human and mouse cells. Based on our laboratory experiments, CBEO may serve as a promising, sustainable, and environmentally friendly attractant for B. dorsalis males; however, field experiments are needed to confirm this hypothesis.

5.
Int J Biol Macromol ; 198: 46-53, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34958815

RESUMO

Citron (Citrus. medica L.) fruits are commonly utilized in the production of essential oil, therefore, the fruits residues turn out to be industrial byproducts. In the present study, a crude polysaccharide was extracted from citron fruit residues by hot water extraction and precipitation of ethanol (95%), after deproteinization, a major polysaccharide component (CMLP-2) was obtained by gradient ethanol precipitation (20%-80%). The physicochemical properties of CMLP-2 such as surface morphology, functional groups, and thermostability were examined by FT-IR spectroscopy, SEM, and thermogravimetric analysis. Moreover, the chemical structure of CMLP-2 was elucidated that CMLP-2 is an acidic pectic polysaccharide consisting of arabinose (Ara), galacturonic acid (GalA), and rhamnose (Rha) in a molar ratio of 4:2:1 with a molecular weight of 202.18 kDa. CMLP-2 is a novel pectic polysaccharide rich in rhamnogalacturonan I (RG-I). Moreover, rheological tests revealed that CMLP-2 solution is pseudoplastic and temperature resistant. The result could be a good basis for the utilization of Citrus medica L. fruits residues as plant-derived food additive.


Assuntos
Etanol
6.
Food Sci Nutr ; 8(11): 5811-5822, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33282233

RESUMO

In this study, the non-targeted large-scale plant metabolomics (UPLC-Q-Orbitrap-MS) was performed for the comparison of chemical profiling of the leaves, barks, flowers, peels, pulps, and seeds of Clausena lansium (Lour.) Skeels (called "wampee"). A total of 364 metabolites were identified, and 62 potential biomarkers were selected by the multivariate statistical analysis. Hierarchical cluster analysis suggested that the selected biomarkers were significant differential metabolites among various parts of wampee. Metabolic pathway analysis showed a significant enrichment of the "Flavone and flavonol synthesis" and "Isoquinoline alkaloid biosynthesis" pathway. This study provides important information for the isolation and identification of functional components from different tissues of wampee and the metabolic biosynthesis pathway elucidation in detail.

7.
Int J Biol Macromol ; 156: 1323-1329, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31760007

RESUMO

Citrus grandis 'Tomentosa' which is a special Citrus cultivar, has been employed as cough suppressant and expectorant in traditional Chinese medicine for thousands of years. The aim of this study is to investigate the immunomodulatory role of an acidic polysaccharide (designated as CGTP-AP) purified from C. grandis 'Tomentosa'. CGTP-AP showed effective immune activation in RAW264.7 macrophages at the concentration of 1-100 µg/mL. CGTP-AP could promote the release of NO in dose- and time-dependent manners. Enzyme-Linked Immunosorbent Assay (ELISA) and RT-PCR analysis demonstrated that CGTP-AP could stimulate the secretion of TNF-α and IL-6 in a dosage-dependent way. Western blot analysis and RT-PCR analysis indicated that CGTP-AP treatment could induce the iNOS and COX-2 expression in RAW264.7 macrophages. By conducting the inhibitors experiments, the activation of NF-κB and MAPK signaling pathways by CGTP-AP treatment was confirmed. Therefore, the present results declared that CGTP-AP could be a promising candidate as a potent immunomodulator for the application in future pharmaceutical development.


Assuntos
Citrus/química , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Polissacarídeos/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Polissacarídeos/química , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
8.
J Agric Food Chem ; 67(15): 4232-4239, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30901209

RESUMO

Systemicity is a desirable property for insecticides. Many phytochemicals show good systemic properties and thus are natural sources of novel systemic insecticidal ingredients. Bruceine D, a quassinoid, was identified in Brucea javanica (L.) Merr. and displayed outstanding systemic properties and excellent antifeedant activity against the diamondback moth (DBM, Plutella xylostella L.), beet armyworm ( Spodoptera exigua Hübner), and cotton leafworm ( Spodoptera litura Fabricius). Its antifeedant effect on third instar larvae of DBM was approximately 6.2-fold stronger than that of azadirachtin. When bruceine D was applied to roots at a concentration of 100 µg/mL for 24 and 48 h, its concentration in flowering Chinese cabbage ( Brassica campestris L. ssp. chinensis var. utiliz Tsen et Lee) leaves was 38.69 µg/g (fresh weight, FW) and 108.45 µg/g (FW), respectively. These concentrations could achieve 93.80% and 96.83% antifeedant effects, which were significantly greater than those of azadirachtin. Similar to azadirachtin, bruceine D also posed a potent growth inhibition effect on insect larvae. After feeding with 20 µg/g bruceine D, no pupae were observed. The results demonstrated that bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity.


Assuntos
Brucea/química , Comportamento Alimentar/efeitos dos fármacos , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Brassica/parasitologia , Inseticidas/química , Inseticidas/isolamento & purificação , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento
9.
J Agric Food Chem ; 65(30): 6169-6178, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28692262

RESUMO

Enhancing the systemic distribution of a bioactive compound by exploiting the vascular transport system of a plant presents a means of reducing both the volume and frequency of pesticide/fungicide application. The foliar uptake of the glucose-fipronil conjugate N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(ß-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF) achieved in castor bean (Ricinus communis) and its transport via the phloem are known to be mediated by monosaccharide transporter(s) [MST(s)], although neither the identity of the key MST(s) involved nor the mechanistic basis of its movement have yet to be described. On the basis of homology with Arabidopsis thaliana sugar transporters, the castor bean genome was concluded to harbor 53 genes encoding a sugar transporter, falling into the eight previously defined subfamilies INT, PMT, VGT, STP, ERD6, pGlucT, TMT, and SUT. Transcriptional profiling identified the product of RcSTP1 as a candidate for mediating GTF uptake, because this gene was induced by exposure of the plant to GTF. When RcSTP1 was transiently expressed in onion epidermis cells, the site of RcSTP1 deposition was shown to be the plasma membrane. A functional analysis based on RcSTP1 expression in Xenopus laevis oocytes demonstrated that its product has a high affinity for GTF. The long-distance root-to-shoot transport of GTF was enhanced in a transgenic soybean chimera constitutively expressing RcSTP1.


Assuntos
Glucose/metabolismo , Inseticidas/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Monossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Pirazóis/metabolismo , Ricinus/metabolismo , Transporte Biológico , Proteínas de Transporte de Monossacarídeos/genética , Floema/metabolismo , Proteínas de Plantas/genética , Ricinus/genética
10.
J Agric Food Chem ; 62(35): 8791-8, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25134020

RESUMO

The ability to visualize the movement of glycosyl insecticides contributes to learning their translocation and distribution in plants. In our present work, a novel fluorescent glucose-fipronil conjugate N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-ß-D-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (2-NBDGTF), was obtained via click chemistry. Disk uptake experiments showed that an active carrier-mediated system was involved in the 2-NBDGTF uptake process. Meanwhile, 2-NBDGTF exhibited comparable phloem mobility with GTF in castor bean seedlings. Visualization of 2-NBDGTF uptake and transport experiment showed that this fluorescent glucose-fipronil conjugate could be loaded into sieve tubes after transiting through epidermal cells and mesophyll cells and then translocate from cotyledon to hypocotyl via phloem in castor bean seedlings. The results above determined that it is a promising fluorescence tagging approach for revealing the activities of glycosyl insecticides and 2-NBDGTF is a reasonable and feasible fluorescent surrogate of GTF for tracing the distribution of glucose-fipronil conjugates.


Assuntos
Glucose/química , Inseticidas/química , Pirazóis/química , Pirazóis/metabolismo , Ricinus communis/metabolismo , Transporte Biológico , Ricinus communis/química , Ricinus communis/embriologia , Cotilédone/química , Cotilédone/metabolismo , Corantes Fluorescentes , Glucose/metabolismo , Inseticidas/metabolismo , Microscopia Confocal , Floema/química , Floema/metabolismo , Plântula/química , Plântula/metabolismo
11.
J Agric Food Chem ; 62(26): 6065-71, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24918526

RESUMO

In our previous work, a glucose-fipronil (GTF) conjugate at the C-1 position was synthesized via click chemistry and a glucose moiety converted a non-phloem-mobile insecticide fipronil into a moderately phloem-mobile insecticide. In the present paper, fipronil was introduced into the C-2, C-3, C-4, and C-6 positions of glucose via click chemistry to obtain four new conjugates and to evaluate the effects of the different glucose isomers on phloem mobility. The phloem mobility of the four new synthetic conjugates and GTF was tested using the Ricinus seedling system. The results confirmed that conjugation of glucose at different positions has a significant influence on the phloem mobility of GTF conjugates.


Assuntos
Glucose/análogos & derivados , Inseticidas/farmacocinética , Floema/metabolismo , Pirazóis/química , Ricinus communis/metabolismo , Plântula/metabolismo , Transporte Biológico/efeitos dos fármacos , Ricinus communis/química , Ricinus communis/efeitos dos fármacos , Glucose/análise , Glucose/farmacocinética , Inseticidas/análise , Inseticidas/química , Estrutura Molecular , Floema/química , Pirazóis/análise , Pirazóis/farmacocinética , Plântula/química , Plântula/efeitos dos fármacos
12.
J Photochem Photobiol B ; 132: 10-6, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24561186

RESUMO

Phloem mobility is an important factor for long-distance transport of systemic pesticides in plants. Our previous study revealed that a fluorescent glucose-insecticide conjugate, N-{3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-iodo-1H-pyrazol-5-yl}-N-{[1-(ß-D-glucopyranosyl)-1H-1,2,3-triazole-4-yl]methyl}-N-{[1-((N-(7-nitrobenz-2-oxa-1,3-diazole-4-amine))-propyl)-1H-1,2,3-triazole-4-yl]methyl}amine (IPGN), can be transported in tobacco cells. Several studies have also indicated that glucose moieties can guide the conjugates into plant cells. In this study, we investigated the phloem mobility of IPGN within castor bean seedlings. Cotyledon uptake experiment results show that IPGN could enter the phloem of the mid-veins of cotyledons. The results of further quantitative analysis show that IPGN was present in small amounts in the phloem sap despite the inconsistencies of physicochemical properties with diffusion through the plasma membrane. Its concentration in the phloem sap (about 370nM at 5h) was much lower than that in the incubation medium (100µM), which suggests that IPGN exhibited weak phloem mobility. After the leaves of Ricinus plantlets were treated with IPGN, green fluorescence could be observed in the phloem of the petioles, bud apical nodes, bud mid-veins, and mid-veins of the untreated leaves. The localization of the fluorescent conjugate at various levels of Ricinus plantlets indicates that it was translocated at a distance to sink organs via sieve tubes. The results proved that introducing a glucose group is a feasible approach to modify non-phloem-mobile pesticides and produce phloem-mobile pesticides.


Assuntos
Corantes Fluorescentes/química , Glucose/química , Glucosídeos/química , Oxidiazóis/química , Ricinus/metabolismo , Triazóis/química , Cromatografia Líquida de Alta Pressão , Cotilédone/química , Cotilédone/efeitos dos fármacos , Cotilédone/metabolismo , Glucosídeos/farmacologia , Microscopia de Fluorescência , Oxidiazóis/farmacologia , Floema/química , Floema/efeitos dos fármacos , Floema/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...