Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(7): e2309379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37901965

RESUMO

Flexible organic solar cells (FOSCs) have attracted considerable attention from researchers as promising portable power sources for wearable electronic devices. However, insufficient power conversion efficiency (PCE), intrinsic stretchability, and mechanical stability of FOSCs remain severe obstacles to their application. Herein, an entangled strategy is proposed for the synergistic optimization of PCE and mechanical properties of FOSCs through green sequential printing combined with polymer-induced spontaneous gradient heterojunction phase separation morphology. Impressively, the toughened-pseudo-planar heterojunction (Toughened-PPHJ) film exhibits excellent tensile properties with a crack onset strain (COS) of 11.0%, twice that of the reference bulk heterojunction (BHJ) film (5.5%), which is among the highest values reported for the state-of-the-art polymer/small molecule-based systems. Finite element simulation of stress distribution during film bending confirms that Toughened-PPHJ film can release residual stress well. Therefore, this optimal device shows a high PCE (18.16%) with enhanced (short-circuit current density) JSC and suppressed energy loss, which is a significant improvement over the conventional BHJ device (16.99%). Finally, the 1 cm2 flexible Toughened-PPHJ device retains more than 92% of its initial PCE (13.3%) after 1000 bending cycles. This work provides a feasible guiding idea for future flexible portable power supplies.

2.
Adv Mater ; 36(3): e2308159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831921

RESUMO

The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.

3.
Small ; 17(49): e2103537, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655164

RESUMO

The thermal stability of high-efficiency organic photovoltaics (OPVs) is critical to the manufacturing of this technology. Therefore, targeted strategies and approaches shall be developed to improve efficiency and stability, simultaneously. Herein, a seleno twisted benzodiperylenediimides (TBD-PDI-Se) acceptor-doping strategy is taken advantage of to demonstrate the ternary bulk heterojunction OPVs with excellent stability, achieving outstanding power conversion efficiency of 14.43% and 17.25% based on PM6:IT-4F and PM6:Y6 ternary blend devices, respectively, which are superior to the corresponding binary devices. As evidenced by the active layer morphology, exciton dynamic study and the characterizations of the enabled device, the ternary blend device keeps nearly 90% original efficiency (t = 1000 h) under continuous constant heating at 140 °C. Furthermore, the application of acceptor as the third component in PBDB-T:ITIC, J71:ITIC, and PBDB-T:PC71 BM systems is also verified, proving the good universality of acceptor-doping ternary strategy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA