Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Hortic Res ; 11(5): uhae072, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725457

RESUMO

Nitrogen (N) is regarded as an essential macronutrient and is tightly associated with carbon (C) metabolism in plants. The transcriptome data obtained from this study showed that the expression level of the apple basic leucine zipper (bZIP) transcription factor (TF) MdbZIP44 was up-regulated in 'Oregon Spur Delicious' (Malus domestica Borkh.) apple fruits under nitrogen supply. MdbZIP44 bound to the promoter of Mdα-GP2 gene and inhibited its expression, thereby promoting starch accumulation and decreasing glucose content in apple and tomato fruits. Besides, overexpression of MdbZIP44 promoted sucrose accumulation by regulating the activities of sucrose metabolism-related enzymes and the expression of sugar metabolism-related genes in apple callus and tomato fruits. Furthermore, biochemical assays indicated that MdbZIP44 directly interacted with MdCPRF2-like, another bZIP gene in apple. Meanwhile, this study found that MdCPRF2-like, along with the MdbZIP44 and MdCPRF2-like complex, could activate the expression of Mdα-GP2, respectively. In conclusion, this study provides a new reference for potential mechanisms underlying that MdbZIP44-MdCPRF2-like-Mdα-GP2 regulates starch and sugar metabolism under nitrogen supply.

2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731801

RESUMO

Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.


Assuntos
Medicago truncatula , Folhas de Planta , Pulvínulo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Medicago truncatula/metabolismo , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Pulvínulo/metabolismo , Movimento , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Mimosa/fisiologia , Mimosa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
BMC Plant Biol ; 24(1): 374, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714922

RESUMO

BACKGROUND: PC (phytocyanin) is a class of copper-containing electron transfer proteins closely related to plant photosynthesis, abiotic stress responses growth and development in plants, and regulation of the expression of some flavonoids and phenylpropanoids, etc., however, compared with other plants, the PC gene family has not been systematically characterized in apple. RESULTS: A total of 59 MdPC gene members unevenly distributed across 12 chromosomes were identified at the genome-wide level. The proteins of the MdPC family were classified into four subfamilies based on differences in copper binding sites and glycosylation sites: Apple Early nodulin-like proteins (MdENODLs), Apple Uclacyanin-like proteins (MdUCLs), Apple Stellacyanin-like proteins (MdSCLs), and Apple Plantacyanin-like proteins (MdPLCLs). Some MdPC members with similar gene structures and conserved motifs belong to the same group or subfamily. The internal collinearity analysis revealed 14 collinearity gene pairs among members of the apple MdPC gene. Interspecific collinearity analysis showed that apple had 31 and 35 homologous gene pairs with strawberry and grape, respectively. Selection pressure analysis indicated that the MdPC gene was under purifying selection. Prediction of protein interactions showed that MdPC family members interacted strongly with the Nad3 protein. GO annotation results indicated that the MdPC gene also regulated the biosynthesis of phenylpropanoids. Chip data analysis showed that (MdSCL3, MdSCL7 and MdENODL27) were highly expressed in mature fruits and peels. Many cis-regulatory elements related to light response, phytohormones, abiotic stresses and flavonoid biosynthetic genes regulation were identified 2000 bp upstream of the promoter of the MdPC gene, and qRT-PCR results showed that gene members in Group IV (MdSCL1/3, MdENODL27) were up-regulated at all five stages of apple coloring, but the highest expression was observed at the DAF13 (day after fruit bag removal) stage. The gene members in Group II (MdUCL9, MdPLCL3) showed down-regulated or lower expression in the first four stages of apple coloring but up-regulated and highest expression in the DAF 21 stage. CONCLUSION: Herein, one objective of these findings is to provide valuable information for understanding the structure, molecular evolution, and expression pattern of the MdPC gene, another major objective in this study was designed to lay the groundwork for further research on the molecular mechanism of PC gene regulation of apple fruit coloration.


Assuntos
Evolução Molecular , Malus , Proteínas de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Pigmentação/genética , Frutas/genética , Frutas/metabolismo , Genes de Plantas , Família Multigênica
4.
Chemosphere ; 357: 141970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608776

RESUMO

The extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water bodies is imperative due to the potential harm to humans and the ecosystem caused by NSAID-contaminated water. Quaternary amino-functionalized epichlorohydrin cross-linked chitosan fibers (QECFs), an economical and eco-friendly adsorbent, were successfully prepared using a simple and gentle method for efficient diclofenac (DCF) adsorption. Additionally, the optimized factors for the preparation of QECFs included epichlorohydrin concentration, pH, temperature, and (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHTAC) concentration. QECFs demonstrated excellent adsorption performance for DCF across a broad pH range of 7-12. The calculated maximum adsorption capacity and the amount of adsorbed DCF per adsorption site were determined to be 987.5 ± 20.1 mg/g and 1.2 ± 0.2, respectively, according to the D-R and Hill isotherm models, at pH 7 within 180 min. This performance surpassed that of previously reported adsorbents. The regeneration of QECFs could be achieved using a 0.5 mol/L NaOH solution within 90 min, with QECFs retaining their original fiber form and experiencing only a 9.18% reduction in adsorption capacity after 5 cycles. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy were used to study the characterization of QECFs, the preparation mechanism of QECFs, and the adsorption mechanism of DCF by QECFs. Quaternary ammonium groups (R4N+) were well developed in QECFs through the reaction between amino/hydroxyl groups on chitosan and CHTAC, and approximately 0.98 CHTAC molecule with 0.98 R4N+ group were immobilized on each chitosan monomer. Additionally, these R4N+ on QECFs played a crucial role in the removal of DCF.


Assuntos
Anti-Inflamatórios não Esteroides , Quitosana , Diclofenaco , Águas Residuárias , Poluentes Químicos da Água , Quitosana/química , Diclofenaco/química , Adsorção , Poluentes Químicos da Água/química , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Anti-Inflamatórios não Esteroides/química , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Temperatura , Epicloroidrina/química
5.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674058

RESUMO

In this study, we obtained and cloned VvSnRK2.7 by screening transcriptomic data to investigate the function of the grape sucrose non-fermenting kinase 2 (SnRK2) gene under stress conditions. A yeast two-hybrid (Y2H) assay was used to further screen for interaction proteins of VvSnRK2.7. Ultimately, VvSnRK2.7 was heterologously expressed in Arabidopsis thaliana, and the relative conductivity, MDA content, antioxidant enzyme activity, and sugar content of the transgenic plants were determined under drought treatment. In addition, the expression levels of VvSnRK2.7 in Arabidopsis were analyzed. The results showed that the VvSnRK2.7-EGFP fusion protein was mainly located in the cell membrane and nucleus of tobacco leaves. In addition, the VvSnRK2.7 protein had an interactive relationship with the VvbZIP protein during the Y2H assay. The expression levels of VvSnRK2.7 and the antioxidant enzyme activities and sugar contents of the transgenic lines were higher than those of the wild type under drought treatment. Moreover, the relative conductivity and MDA content were lower than those of the wild type. The results indicate that VvSnRK2.7 may activate the enzyme activity of the antioxidant enzyme system, maintain normal cellular physiological metabolism, stabilize the berry sugar metabolism pathway under drought stress, and promote sugar accumulation to improve plant resistance.


Assuntos
Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Vitis/genética , Vitis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resistência à Seca
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674041

RESUMO

Cold stress adversely impacts grape growth, development, and yield. Therefore, improving the cold tolerance of grape is an urgent task of grape breeding. The Jasmonic acid (JA) pathway responsive gene JAZ plays a key role in plant response to cold stress. However, the role of JAZ in response to low temperatures in grape is unclear. In this study, VvJAZ13 was cloned from the 'Pinot Noir' (Vitis vinefera cv. 'Pinot Noir') grape, and the potential interacting protein of VvJAZ13 was screened by yeast two-hybrid (Y2H). The function of VvJAZ13 under low temperature stress was verified by genetic transformation. Subcellular localization showed that the gene was mainly expressed in cytoplasm and the nucleus. Y2H indicated that VvF-box, VvTIFY5A, VvTIFY9, Vvbch1, and VvAGD13 may be potential interacting proteins of VvJAZ13. The results of transient transformation of grape leaves showed that VvJAZ13 improved photosynthetic capacity and reduced cell damage by increasing maximum photosynthetic efficiency of photosystem II (Fv/Fm), reducing relative electrolyte leakage (REL) and malondialdehyde (MDA), and increasing proline content in overexpressed lines (OEs), which played an active role in cold resistance. Through the overexpression of VvJAZ13 in Arabidopsis thaliana and grape calli, the results showed that compared with wild type (WT), transgenic lines had higher antioxidant enzyme activity and proline content, lower REL, MDA, and hydrogen peroxide (H2O2) content, and an improved ability of scavenging reactive oxygen species. In addition, the expression levels of CBF1-2 and ICE1 genes related to cold response were up-regulated in transgenic lines. To sum up, VvJAZ13 is actively involved in the cold tolerance of Arabidopsis and grape, and has the potential to be a candidate gene for improving plant cold tolerance.


Assuntos
Arabidopsis , Resposta ao Choque Frio , Proteínas de Plantas , Vitis , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Vitis/genética , Vitis/metabolismo
7.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554534

RESUMO

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Assuntos
Frutas , Giberelinas , Reguladores de Crescimento de Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Mol Cancer ; 23(1): 33, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355583

RESUMO

BACKGROUND: Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS: In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS: The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION: Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.


Assuntos
MicroRNAs , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Endógeno Competitivo , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Integrinas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4965-4981, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147995

RESUMO

Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the ß-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple 'Asda' and 'Chengji No.1' with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in 'Asda' apples with high acid content were significantly higher than that in 'Chengji No.1' apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in 'Asda' apples were significantly higher than that in 'Chengji No.1' apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.


Assuntos
Malus , Malus/genética , Malus/química , Malus/metabolismo , Frutas/genética , Estrutura Secundária de Proteína
10.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003604

RESUMO

Ubiquitination participates in plant hormone signaling and stress response to adversity. SKP1-Like, a core component of the SCF (Skp1-Cullin-F-box) complex, is the final step in catalyzing the ubiquitin-mediated protein degradation pathway. However, the SKP1-Like gene family has not been well characterized in response to apple abiotic stresses and hormonal treatments. This study revealed that 17 MdSKP1-Like gene family members with the conserved domain of SKP1 were identified in apples and were unevenly distributed on eight chromosomes. The MdSKP1-Like genes located on chromosomes 1, 10, and 15 were highly homologous. The MdSKP1-like genes were divided into three subfamilies according to the evolutionary affinities of monocotyledons and dicotyledons. MdSKP1-like members of the same group or subfamily show some similarity in gene structure and conserved motifs. The predicted results of protein interactions showed that members of the MdSKP1-like family have strong interactions with members of the F-Box family of proteins. A selection pressure analysis showed that MdSKP1-Like genes were in purifying selection. A chip data analysis showed that MdSKP1-like14 and MdSKP1-like15 were higher in flowers, whereas MdSKP1-like3 was higher in fruits. The upstream cis-elements of MdSKP1-Like genes contained a variety of elements related to light regulation, drought, low temperature, and many hormone response elements, etc. Meanwhile, qRT-PCR also confirmed that the MdSKP1-Like gene is indeed involved in the response of the apple to hormonal and abiotic stress treatments. This research provides evidence for regulating MdSKP1-Like gene expression in response to hormonal and abiotic stresses to improve apple stress resistance.


Assuntos
Malus , Malus/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Filogenia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
11.
BMC Plant Biol ; 23(1): 607, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030998

RESUMO

BACKGROUND: Bud sport is a kind of somatic mutation that usually occurred in apple. 'Red Delicious' is considered to be a special plant material of bud sport, whereas the genetic basis of plant mutants is still unknown. In this study, we used whole-genome resequencing and transcriptome sequencing to identify genes related to spur-type and skin-color in the 'Red Delicious' (G0) and its four generation mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee Spur' (G4). RESULTS: The number of single nucleotide polymorphisms (SNPs), insertions and deletions (InDels) and structural variations (SVs) were decreased in four generation mutants compared to G0, and the number of unique SNPs and InDels were over 9-fold and 4-fold higher in G1 versus (vs.) G2 and G2 vs. G3, respectively. Chromosomes 2, 5, 11 and 15 carried the most SNPs, InDels and SVs, while chromosomes 1 and 6 carried the least. Meanwhile, we identified 4,356 variation genes by whole-genome resequencing and transcriptome, and obtained 13 and 16 differentially expressed genes (DEGs) related to spur-type and skin-color by gene expression levels. Among them, DELLA and 4CL7 were the potential genes that regulate the difference of spur-type and skin-color characters, respectively. CONCLUSIONS: Our study identified potential genes associated with spur-type and skin-color differences in 'Red Delicious' and its four generation mutants, which provides a theoretical foundation for the mechanism of the apple bud sport.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Genes de Plantas , Mutação INDEL , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
12.
BMC Plant Biol ; 23(1): 541, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37924024

RESUMO

BACKGROUND: Mitochondria are the powerhouse of the cell and are critical for plant growth and development. Pitaya (Selenicereus or Hylocereus) is the most important economic crop in the family Cactaceae and is grown worldwide, however its mitogenome is unreported. RESULTS: This study assembled the complete mitogenome of the red skin and flesh of pitaya (Selenicereus monacanthus). It is a full-length, 2,290,019 bp circular molecule encoding 59 unique genes that only occupy 2.17% of the entire length. In addition, 4,459 pairs of dispersed repeats (≥ 50 bp) were identified, accounting for 84.78% of the total length, and three repeats (394,588, 124,827, and 13,437 bp) mediating genomic recombination were identified by long read mapping and Sanger sequencing. RNA editing events were identified in all 32 protein-coding genes (PCGs), among which four sites (nad1-2, nad4L-2, atp9-copy3-223, and ccmFC-1309) were associated with the initiation or termination of PCGs. Seventy-eight homologous fragments of the chloroplast genome were identified in the mitogenome, the longest having 4,523 bp. In addition, evolutionary analyses suggest that S. monacanthus may have undergone multiple genomic reorganization events during evolution, with the loss of at least nine PCGs (rpl2, rpl10, rps2, rps3, rps10, rps11, rps14, rps19, and sdh3). CONCLUSIONS: This study revealed the genetic basis of the S. monacanthus mitogenome, and provided a scientific basis for further research on phenotypic traits and germplasm resource development.


Assuntos
Cactaceae , Genoma Mitocondrial , Filogenia , Genômica , Evolução Molecular , Cactaceae/genética
13.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894862

RESUMO

Q-type C2H2 zinc finger proteins (ZFPs), the largest family of transcription factors, have been extensively studied in plant genomes. However, the genes encoding this transcription factor family have not been explored in grapevine genomes. Therefore, in this study, we conducted a genome-wide identification of ZFP genes in three species of grapevine, namely Vitis vinifera, Vitis riparia, and Vitis amurensis, based on the sequence databases and phylogenetic and their conserved domains. We identified 52, 54, and 55 members of Q-type C2H2 ZFPs in V. vinifera, V. riparia, and V. amurensis, respectively. The physical and chemical properties of VvZFPs, VrZFPs, and VaZFPs were examined. The results showed that these proteins exhibited differences in the physical and chemical properties and that they all were hydrophobic proteins; the instability index showed that the four proteins were stable. The subcellular location of the ZFPs in the grapevine was predicted mainly in the nucleus. The phylogenetic tree analysis of the amino acid sequences of VvZFP, VaZFP, VrZFP, and AtZFP proteins showed that they were closely related and were divided into six subgroups. Chromosome mapping analysis showed that VvZFPs, VrZFPs, and VaZFPs were unevenly distributed on different chromosomes. The clustered gene analysis showed that the motif distribution was similar and the sequence of genes was highly conserved. Exon and intron structure analysis showed that 118 genes of ZFPs were intron deletion types, and the remaining genes had variable numbers of introns, ranging from 2 to 15. Cis-element analysis showed that the promoter of VvZFPs contained multiple cis-elements related to plant hormone response, stress resistance, and growth, among which the stress resistance elements were the predominant elements. Finally, the expression of VvZFP genes was determined using real-time quantitative PCR, which confirmed that the identified genes were involved in response to methyl jasmonate (MeJA), abscisic acid (ABA), salicylic acid (SA), and low-temperature (4 °C) stress. VvZFP10-GFP and VvZFP46-GFP fusion proteins were localized in the nucleus of tobacco cells, and VvZFP10 is the most responsive gene among all VvZFPs with the highest relative expression level to MeJA, ABA, SA and low-temperature (4 °C) stress. The present study provides a theoretical basis for exploring the mechanism of response to exogenous hormones and low-temperature tolerance in grapes and its molecular breeding in the future.


Assuntos
Dedos de Zinco CYS2-HIS2 , Dedos de Zinco CYS2-HIS2/genética , Filogenia , Proteínas de Plantas/metabolismo , Genoma de Planta , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Dedos de Zinco/genética
14.
Chemosphere ; 345: 140485, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858771

RESUMO

Rhenium, a rare and critical metal, existing in the industrial wastewater has been aroused extensive interests recently, due to its environmental and resource issues. Chitosan, an easily available, low-cost and eco-friendly biopolymer, was prepared and modified by grafting primary, secondary, tertiary and quaternary amino groups, respectively. Adsorption behaviors and interactions between ReO4- and these four types of aminated adsorbents were investigated through batch experiments, spectroscopic analysis, and theoretical computations. Chitosan modified with secondary amines showed an extremely high uptake of ReO4- with 742.0 mg g-1, which was higher than any reported adsorbents so far. Furthermore, a relatively high adsorption selectivity for Re(VII), as well as the stable and facile regeneration of these aminated adsorbents revealed a promising approach for Re(VII) recovery in full-scale applications. The electrostatic attraction was illustrated to be the main adsorption mechanism by Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy analyses. Significantly, the sub-steps of the adsorption process, encompassing the transformation of binding sites and the subsequent binding between these sites and the adsorbate, have been thoroughly investigated through the density functional theory (DFT) calculation method. This approach was firstly proposed to clearly demonstrate the differences in Re(VII) adsorption behavior onto four types of aminated adsorbents, resulting the importance of not only strong binding energy but also an appropriate binding spatial environmental for effective Re(VII) adsorption.


Assuntos
Quitosana , Rênio , Poluentes Químicos da Água , Adsorção , Quitosana/química , Águas Residuárias , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise
15.
Medicine (Baltimore) ; 102(35): e34593, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657038

RESUMO

The management of idiopathic granulomatous mastitis (IGM) poses a significant challenge because of its ambiguous etiology. This study aimed to investigate the efficacy of traditional Chinese medicine (TCM) combined with mammotome-assisted minimally invasive surgery (MAMIS) for the treatment of IGM. This retrospective cohort study included patients with IGM who underwent treatment at our hospital between January 2017 and June 2022. Patients treated with Shugan Sanjie decoction alone and preoperative Shugan Sanjie decoction combined with MAMIS were included in Groups A and B, respectively. We focused on the demographics, clinical characteristics, and outcomes of the patients in the 2 groups. A total of 124 female patients with an average age of 33.9 ± 3.6 years were included in the study. The demographic and clinical characteristics of patients in Groups A (n = 55) and B (n = 69) were similar (P > .05). However, there were significant differences between the 2 groups in terms of treatment duration, 1-year complete remission (CR), and recurrence. Group B showed shorter treatment time (11.7 ± 5.1 vs 15.3 ± 6.4 months, P = .001), higher 1-year CR (72.5% vs 45.5%, P = .002), and lower recurrence (7.2% vs 21.8%, P = .019) in comparison to Group A. Shugan Sanjie decoction promoted the shrinkage of breast lesions in patients with IGM. Combined with MAMIS, this treatment regimen shortened the treatment duration, accelerated the recovery process, and reduced the recurrence rate.


Assuntos
Mastite Granulomatosa , Humanos , Feminino , Adulto , Mastite Granulomatosa/tratamento farmacológico , Mastite Granulomatosa/cirurgia , Estudos Retrospectivos , Duração da Terapia , Procedimentos Cirúrgicos Minimamente Invasivos , Imunoglobulina M
16.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628740

RESUMO

To elucidate the structural characteristics, phylogeny and biological function of anthocyanin synthase (ANS) and its role in anthocyanin synthesis, members of the strawberry ANS gene family were obtained by whole genome retrieval, and their bioinformatic analysis and expression analysis at different developmental stages of fruit were performed. The results showed that the strawberry ANS family consisted of 141 members distributed on 7 chromosomes and could be divided into 4 subfamilies. Secondary structure prediction showed that the members of this family were mainly composed of random curls and α-helices, and were mainly located in chloroplasts, cytoplasm, nuclei and cytoskeletons. The promoter region of the FvANS gene family contains light-responsive elements, abiotic stress responsive elements and hormone responsive elements, etc. Intraspecific collinearity analysis revealed 10 pairs of FvANS genes, and interspecific collinearity analysis revealed more relationships between strawberries and apples, grapes and Arabidopsis, but fewer between strawberries and rice. Chip data analysis showed that FvANS15, FvANS41, FvANS47, FvANS48, FvANS49, FvANS67, FvANS114 and FvANS132 were higher in seed coat tissues and endosperm. FvANS16, FvANS85, FvANS90 and FvANS102 were higher in internal and fleshy tissues. Quantitative real-time PCR (qRT-PCR) showed that the ANS gene was expressed throughout the fruit coloring process. The expression levels of most genes were highest in the 50% coloring stage (S3), such as FvANS16, FvANS19, FvANS31, FvANS43, FvANS73, FvANS78 and FvANS91. The expression levels of FvANS52 were the highest in the green fruit stage (S1), and FvANS39 and FvANS109 were the highest in the 20% coloring stage (S2). These results indicate that different members of the FvANS gene family play a role in different pigmentation stages, with most genes playing a role in the expression level of the rapid accumulation of fruit coloring. This study lays a foundation for further study on the function of ANS gene family.


Assuntos
Arabidopsis , Fragaria , Antocianinas/genética , Fragaria/genética , Frutas/genética , Óxido Nítrico Sintase , Sementes
17.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298328

RESUMO

Brassinosteroids (BRs) play vital roles in the plant life cycle and synthetic BRs are widely used to increase crop yield and plant stress tolerance. Among them are 24R-methyl-epibrassinolide (24-EBL) and 24S-ethyl-28-homobrassinolide (28-HBL), which differ from brassinolide (BL, the most active BR) at the C-24 position. Although it is well known that 24-EBL is 10% active as BL, there is no consensus on the bioactivity of 28-HBL. A recent outpouring of research interest in 28-HBL on major crops accompanied with a surge of industrial-scale synthesis that produces mixtures of active (22R,23R)-28-HBL and inactive (22S,23S)-28HBL, demands a standardized assay system capable of analyzing different synthetic "28-HBL" products. In this study, the relative bioactivity of 28-HBL to BL and 24-EBL, including its capacity to induce the well-established BR responses at molecular, biochemical, and physiological levels, was systematically analyzed using the whole seedlings of the wild-type and BR-deficient mutant of Arabidopsis thaliana. These multi-level bioassays consistently showed that 28-HBL exhibits a much stronger bioactivity than 24-EBL and is almost as active as BL in rescuing the short hypocotyl phenotype of the dark-grown det2 mutant. These results are consistent with the previously established structure-activity relationship of BRs, proving that this multi-level whole seedling bioassay system could be used to analyze different batches of industrially produced 28-HBL or other BL analogs to ensure the full potential of BRs in modern agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Colestanonas , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Esteroides Heterocíclicos/farmacologia , Arabidopsis/genética , Colestanonas/farmacologia , Proteínas de Arabidopsis/genética , Plantas , Plântula
18.
Plant Cell Rep ; 42(8): 1345-1364, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253815

RESUMO

KEY MESSAGE: The 14-3-3 family is more highly conserved among monocotyledons, and overexpression of MdGRF13 improved drought and salt tolerance in transgenic Arabidopsis thaliana. The 14-3-3 are highly conserved regulatory proteins found in eukaryotes and play an essential role in plant growth, development and stress response. However, the 14-3-3 gene family evolution in monocotyledons and dicotyledons and the biological functions of the MdGRF13 under abiotic stress remain unknown. In our study, 195 members of the 14-3-3 family were identified from 12 species and divided into ε group and the Non-ε group. Synteny analysis within the 14-3-3 family indicated that segmental duplication events contributed to the expansion of the family. Selective pressure analysis indicated that purifying selection was a vital force in the 14-3-3 genes evolution, and monocotyledons had a lower million years ago (Mya) mean values than dicotyledons. Meanwhile, the codon adaptation index (CAI) and frequency of optical codons (FOP) are higher and the effective number of codons (Nc) is lower in monocotyledons 14-3-3 genes compared to dicotyledons. Moreover, the yeast two-hybrid (Y2H) demonstrated that MdGRF13 interacts with MdRD22, MdLHP1a and MdMORF1. Significantly, the malondialdehyde (MDA) content and relative conductivity were decreased, while the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were increased in transgenic Arabidopsis compared to the wild type (WT) under drought and salt stress. These results suggest that overexpression of MdGRF13 significantly improved the tolerance to drought and salt stress in transgenic Arabidopsis. Thus, our results provide a theoretical basis for exploring the evolution and function of the 14-3-3 gene family in monocotyledons and dicotyledons.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas
19.
Physiol Plant ; 175(3): e13910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37042463

RESUMO

Drought is one of the main abiotic factors affecting grape quality. However, the impacts of drought stress on sugar and related gene expression during grape berry ripening remain unclear. In this experiment, the grapes were subjected to different levels of continuous water stress from 45 to 120 days after flowering (DAA) to study the changes in berry sugar content and the expression of genes related to sugar metabolism under different water stresses. Data supported that glucose, fructose, sucrose, and soluble sugars increased from 45 DAA. Combined with previous research results, T1, T2, and Ct grape berries with 60 ~ 75 DAA and large differences in sucrose, fructose, glucose and soluble sugars compared with the Ct were selected for RNA sequencing (RNA-seq). Through transcriptome analysis, 4471 differentially expressed genes (DEGs) were screened, and 65 genes in photosynthesis, ABA signaling pathway and photosynthetic carbon metabolism pathway were analyzed further by qRT-PCR. At 60 DAA, the relative expression levels of CAB1R, PsbP, SNRK2, and PYL9 were significantly upregulated in response to water stress, while AHK1, At4g02290 were down-regulated. At 75 DAA, the relative expression levels of ELIP1, GoLS2, At4g02290, Chi5, SAPK, MAPKKK17, NHL6, KINB2, and AHK1 were upregulated. And CAB1R, PsbA, GoLS1, SnRK2, PYL9, and KINGL were significantly downregulated under moderate water stress. In addition, PsbA expression was down-regulated in response to water stress. These results will help us to fully understand the potential connections between glucose metabolism and gene expression in grapes under drought stress.


Assuntos
Transcriptoma , Vitis , Vitis/metabolismo , Frutas/metabolismo , Desidratação/metabolismo , Perfilação da Expressão Gênica , Açúcares/metabolismo , Glucose/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Planta ; 257(3): 48, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740622

RESUMO

MAIN CONCLUSION: The decreased capacity of auxin-, CTK-, and BR-mediated cell division and cell enlargement pathways, combined with the enhanced capacity of GA and ETH-, JA-, ABA-, SA-mediated stress-resistant pathways were presumed to be the crucial reasons for the formation of spur-type 'Red Delicious' mutants. Vallee Spur', which exhibit short internodes and compact tree shape, is the fourth generation of the spur-type bud sport mutant of 'Red Delicious'. However, the underlying molecular mechanism of these properties remains unclear. Here, comparative phenotypic, full-length transcriptome and phytohormone analyses were performed between 'Red Delicious' (NSP) and 'Vallee Spur' (SP). The new shoot internode length of NSP was ˃ 1.53-fold higher than that of the SP mutant. Cytological analysis showed that the stem cells of the SP mutant were smaller and more tightly arranged relative to the NSP. By Iso-Seq, a total of 1426 differentially expressed genes (DEGs) were detected, including 808 upregulated and 618 downregulated genes in new shoot apex with 2 leaves of the SP mutant. Gene expressions involved in auxin, cytokinin (CTK), and brassinosteroid (BR) signal transduction were mostly downregulated in the SP mutant, whereas those involved in gibberellin (GA), ethylene (ETH), jasmonate (JA), ABA, and salicylic acid (SA) signal transduction were mostly upregulated. The overall thermogram analysis of hormone levels in the shoot apex carrying two leaves detected by LC-MS/MS absolute quantification showed that the levels of IAA-Asp, IAA, iP7G, OPDA, and 6-deoxyCS were significantly upregulated in the SP mutant, while the remaining 28 hormones were significantly downregulated. It is speculated that the decreased capacity of auxin, CTK, and BR-mediated cell division and cell enlargement pathways is crucial for the formation of the SP mutant. GA and stress-resistant pathways of ETH, JA, ABA, and SA also play vital roles in stem elongation. These results highlight the involvement of phytohormones in the formation of stem elongation occurring in 'Red Delicious' spur-type bud sport mutants and provide information for exploring its biological mechanism.


Assuntos
Malus , Malus/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...