Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Integr Plant Biol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501444

RESUMO

ACYL-CoA-BINDING PROTEINs (ACBPs) play crucial regulatory roles during plant response to hypoxia, but their molecular mechanisms remain poorly understood. Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70, influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana. Furthermore, we demonstrate the direct binding of WRKY70 to the ACBP4 promoter, resulting in its upregulation and suggesting a positive feedback loop. Additionally, we pinpointed a phosphorylation site at Ser638 of ACBP4, which enhances submergence tolerance, potentially by facilitating WRKY70's nuclear shuttling. Surprisingly, a natural variation in this phosphorylation site of ACBP4 allowed A. thaliana to adapt to humid conditions during its historical demographic expansion. We further observed that both phosphorylated ACBP4 and oleoyl-CoA can impede the interaction between ACBP4 and WRKY70, thus promoting WRKY70's nuclear translocation. Finally, we found that the overexpression of orthologous BnaC5.ACBP4 and BnaA7.WRKY70 in Brassica napus increases submergence tolerance, indicating their functional similarity across genera. In summary, our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response, but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.

3.
Plant Divers ; 46(1): 78-90, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343592

RESUMO

Endangered species generally have small populations with low genetic diversity and a high genetic load. Thuja sutchuenensis is an endangered conifer endemic to southwestern China. It was once considered extinct in the wild, but in 1999 was rediscovered. However, little is known about its genetic load. We collected 67 individuals from five wild, isolated T. sutchuenensis populations, and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T. sutchuenensis to delineate the conservation units of T. sutchuenensis, based on whole transcriptome sequencing data, as well as target capture sequencing data. We found that populations of T. sutchuenensis could be divided into three groups. These groups had low levels genetic diversity and were moderately genetically differentiated. Our findings also indicate that T. sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum. Among Thuja species, T. sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection. However, distribution of fitness effects analysis indicated a high extinction risk for T. sutchuenensis. Multiple lines of evidence identified three management units for T. sutchuenensis. Although T. sutchuenensis possesses a low genetic load, low genetic diversity, suboptimal fitness, and anthropogenic pressures all present an extinction risk for this rare conifer. This might also hold true for many endangered plant species in the mountains all over the world.

4.
Sci Rep ; 13(1): 13272, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582802

RESUMO

The timing, sequence, and scale of uplift of the Himalayan-Tibetan Orogen (HTO) are controversially debated. Many geoscientific studies assume paleoelevations close to present-day elevations and the existence of alpine environments across the HTO already in the late Paleogene, contradicting fossil data. Using molecular genetic data of ground beetles, we aim to reconstruct the paleoenvironmental history of the HTO, focusing on its southern margin (Himalayas, South Tibet). Based on a comprehensive sampling of extratropical Carabus, and ~ 10,000 bp of mitochondrial and nuclear DNA we applied Bayesian and Maximum likelihood methods to infer the phylogenetic relationships. We show that Carabus arrived in the HTO at the Oligocene-Miocene boundary. During the early Miocene, five lineages diversified in different parts of the HTO, initially in its southern center and on its eastern margin. Evolution of alpine taxa occurred during the late Miocene. There were apparently no habitats for Carabus before the late Oligocene. Until the Late Oligocene elevations must have been low throughout the HTO. Temperate forests emerged in South Tibet in the late Oligocene at the earliest. Alpine environments developed in the HTO from the late Miocene and, in large scale, during the Pliocene-Quaternary. Findings are consistent with fossil records but contrast with uplift models recovered from stable isotope paleoaltimetry.


Assuntos
Evolução Biológica , Besouros , Filogenia , Besouros/classificação , Besouros/genética , Ecossistema , Paleontologia , Ásia , Fósseis
5.
Ecol Evol ; 13(3): e9926, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37006890

RESUMO

Increased access to genome-wide data provides new opportunities for plant conservation. However, information on neutral genetic diversity in a small number of marker loci can still be valuable because genomic data are not available to most rare plant species. In the hope of bridging the gap between conservation science and practice, we outline how conservation practitioners can more efficiently employ population genetic information in plant conservation. We first review the current knowledge about neutral genetic variation (NGV) and adaptive genetic variation (AGV) in seed plants, regarding both within-population and among-population components. We then introduce the estimates of among-population genetic differentiation in quantitative traits (Q ST) and neutral markers (F ST) to plant biology and summarize conservation applications derived from Q ST-F ST comparisons, particularly on how to capture most AGV and NGV on both in-situ and ex-situ programs. Based on a review of published studies, we found that, on average, two and four populations would be needed for woody perennials (n = 18) to capture 99% of NGV and AGV, respectively, whereas four populations would be needed in case of herbaceous perennials (n = 14). On average, Q ST is about 3.6, 1.5, and 1.1 times greater than F ST in woody plants, annuals, and herbaceous perennials, respectively. Hence, conservation and management policies or suggestions based solely on inference on F ST could be misleading, particularly in woody species. To maximize the preservation of the maximum levels of both AGV and NGV, we suggest using maximum Q ST rather than average Q ST. We recommend conservation managers and practitioners consider this when formulating further conservation and restoration plans for plant species, particularly woody species.

6.
Plant Divers ; 45(2): 156-168, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37069930

RESUMO

The strength of phylogeographic breaks can vary among species in the same area despite being subject to the same geological and climate history due to differences in biological traits. Several important phylogeographic breaks exist around the Sichuan Basin in Southwest China but few studies have focused on wind-dispersed plants. Here, we investigated the phylogeographic patterns and the evolutionary history of Populus lasiocarpa, a wind-pollinated and wind-dispersed tree species with a circum-Sichuan Basin distribution in southwest China. We sequenced and analyzed three plastid DNA fragments (ptDNA) and eight nuclear microsatellites (nSSRs) of 265 individuals of P. lasiocarpa from 21 populations spanning the entire distribution range. Distribution patterns based on nSSR data revealed that there are three genetic groups in P. lasiocarpa. This is consistent with the three phylogeographic breaks (Sichuan Basin, the Kaiyong Line and the 105°E line), where the Sichuan basin acts as the main barrier to gene flow between western and eastern groups. However, the distribution pattern based on ptDNA haplotypes poorly matched the phylogeographic breaks, and wind-dispersed seeds may be one of the main contributing factors. Species distribution modelling suggested a larger potential distribution in the last glacial maximum with a severe bottleneck during the last interglacial. A DIYABC model also suggested a population contraction and expansion for both western and eastern lineages. These results indicate that biological traits are likely to affect the evolutionary history of plants, and that nuclear molecular markers, which experience higher levels of gene flow, might be better indicators of phylogeographic breaks.

7.
Genes (Basel) ; 14(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36980832

RESUMO

When a flowering plant species changes its life history from self-supply to parasite, its chloroplast genomes may have experienced functional physical reduction, and gene loss. Most species of Santalales are hemiparasitic and few studies focus on comparing the chloroplast genomes of the species from this order. In this study, we collected and compared chloroplast genomes of 12 species of Santalales and sequenced the chloroplast genomes of Taxillus nigrans and Scurrula parasitica for the first time. The chloroplast genomes for these species showed typical quadripartite structural organization. Phylogenetic analysis suggested that these 12 species of Santalales clustered into three clades: Viscum (4 spp.) and Osyris (1 sp.) in the Santalaceae and Champereia (1 sp.) in the Opiliaceae formed one clade, while Taxillus (3 spp.) and Scurrula (1 sp.) in the Loranthaceae and Schoepfia (1 sp.) in the Schoepfiaceae formed another clade. Erythropalum (1 sp.), in the Erythropalaceae, appeared as a third, most distant, clade within the Santalales. In addition, both Viscum and Taxillus are monophyletic, and Scurrula is sister to Taxillus. A comparative analysis of the chloroplast genome showed differences in genome size and the loss of genes, such as the ndh genes, infA genes, partial ribosomal genes, and tRNA genes. The 12 species were classified into six categories by the loss, order, and structure of genes in the chloroplast genome. Each of the five genera (Viscum, Osyris, Champereia, Schoepfia, and Erythropalum) represented an independent category, while the three Taxillus species and Scurrula were classified into a sixth category. Although we found that different genes were lost in various categories, most genes related to photosynthesis were retained in the 12 species. Hence, the genetic information accorded with observations that they are hemiparasitic species. Our comparative genomic analyses can provide a new case for the chloroplast genome evolution of parasitic species.


Assuntos
Genoma de Cloroplastos , Loranthaceae , Parasitos , Animais , Loranthaceae/genética , Filogenia , Sequência de Bases
8.
Mol Ecol Resour ; 23(5): 1142-1154, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932735

RESUMO

Conifers make up about one third of global forests but are threatened by seed parasitoid wasp species. Many of these wasps belong to the genus Megastigmus, yet little is known about their genomic background. In this study, we provide chromosome-level genome assemblies for two oligophagous conifer parasitoid species of Megastigmus, which represent the first two chromosome-level genomes of the genus. The assembled genomes of Megastigmus duclouxiana and M. sabinae are 878.48 Mb (scaffold N50 of 215.60 Mb) and 812.98 Mb (scaffold N50 of 139.16 Mb), respectively, which are larger than the genome size of most hymenopterans due to the expansion of transposable elements. Expanded gene families highlight the difference in sensory-related genes between the two species, reflecting the difference in their hosts. We further found that these two species have fewer family members but more single-gene duplications than polyphagous congeners in the gene families of ATP-binding cassette transporter (ABC), cytochrome P450 (P450) and olfactory receptors (OR). These findings shed light on the pattern of adaptation to a narrow spectrum of hosts in oligophagous parasitoids. Our findings suggest potential drivers underlying genome evolution and parasitism adaptation, and provide valuable resources for understanding the ecology, genetics and evolution of Megastigmus, as well as for the research and biological control of global conifer forest pests.


Assuntos
Traqueófitas , Vespas , Animais , Vespas/genética , Traqueófitas/genética , Genômica , Adaptação Fisiológica , Cromossomos
9.
Biodivers Data J ; 11: e102828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327380

RESUMO

Background: Most species of Megastigmus are considered important economic pests that grow in seeds, especially of conifers. Accurate identification of species is a crucial step for the biological research of parasitic pests and the further application of biological control. However, their large variety, small size, similar morphology and different growth and development stages have brought great challenges to taxonomic research. Traditional morphological identification often takes a long time and this requires us to seek a new method for rapid and accurate identification. Therefore, the better identification of Megastigmus urgently needs to be combined with molecular methods to help taxonomic development. New information: Here, Megastigmusdaduheensis sp. n. (Chalcidoidea: Megastigmidae) was identified, based on morphology and molecular markers, such as COI and Cytb. M.daduheensis sp. n. is distinct from other known species of the same genus in the morphology. The results of the molecular phylogenetic tree, similarity alignment and genetic distance indicate that the COI and Cytb sequences of M.daduheensis sp. n. are highly similar to M.sobinae and M.duclouxiana, but there are some genetic differences. The genetic distances of M.daduheensis sp. nov. with M.duclouxiana and M.sabinae were 0.34 and 0.33 and the percentages of shared base pairs were 76.3% and 76.8%, respectively. Both morphological and molecular data classified M.daduheensis sp. n. as a new species. The obtained COI and Cytb sequences of M.daduheensis sp. n. can be used as DNA barcodes, providing molecular data for rapid and accurate identification of this species in the future.

10.
Nat Commun ; 13(1): 6541, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319648

RESUMO

Rapid global climate change is posing a substantial threat to biodiversity. The assessment of population vulnerability and adaptive capacity under climate change is crucial for informing conservation and mitigation strategies. Here we generate a chromosome-scale genome assembly and re-sequence genomes of 230 individuals collected from 24 populations for Populus koreana, a pioneer and keystone tree species in temperate forests of East Asia. We integrate population genomics and environmental variables to reveal a set of climate-associated single-nucleotide polymorphisms, insertion/deletions and structural variations, especially numerous adaptive non-coding variants distributed across the genome. We incorporate these variants into an environmental modeling scheme to predict a highly spatiotemporal shift of this species in response to future climate change. We further identify the most vulnerable populations that need conservation priority and many candidate genes and variants that may be useful for forest tree breeding with special aims. Our findings highlight the importance of integrating genomic and environmental data to predict adaptive capacity of a key forest to rapid climate change in the future.


Assuntos
Melhoramento Vegetal , Árvores , Humanos , Árvores/fisiologia , Florestas , Mudança Climática , Genômica
11.
Plant Divers ; 44(4): 340-350, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967253

RESUMO

Living gymnosperms comprise four major groups: cycads, Ginkgo, conifers, and gnetophytes. Relationships among/within these lineages have not been fully resolved. Next generation sequencing has made available a large number of sequences, including both plastomes and single-copy nuclear genes, for reconstruction of solid phylogenetic trees. Recent advances in gymnosperm phylogenomic studies have updated our knowledge of gymnosperm systematics. Here, we review major advances of gymnosperm phylogeny over the past 10 years and propose an updated classification of extant gymnosperms. This new classification includes three classes (Cycadopsida, Ginkgoopsida, and Pinopsida), five subclasses (Cycadidae, Ginkgoidae, Cupressidae, Pinidae, and Gnetidae), eight orders (Cycadales, Ginkgoales, Araucariales, Cupressales, Pinales, Ephedrales, Gnetales, and Welwitschiales), 13 families, and 86 genera. We also described six new tribes including Acmopyleae Y. Yang, Austrocedreae Y. Yang, Chamaecyparideae Y. Yang, Microcachrydeae Y. Yang, Papuacedreae Y. Yang, and Prumnopityeae Y. Yang, and made 27 new combinations in the genus Sabina.

12.
Plant Divers ; 44(4): 369-376, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967254

RESUMO

Elevation plays a crucial factor in the distribution of plants, as environmental conditions become increasingly harsh at higher elevations. Previous studies have mainly focused on the effects of large-scale elevational gradients on plants, with little attention on the impact of smaller-scale gradients. In this study we used 14 microsatellite loci to survey the genetic structure of 332 Juniperus squamata plants along elevation gradient from two sites in the Hengduan Mountains. We found that the genetic structure (single, clonal, mosaic) of J. squamata shrubs is affected by differences in elevational gradients of only 150 m. Shrubs in the mid-elevation plots rarely have a clonal or mosaic structure compared to shrubs in lower- or higher-elevation plots. Human activity can significantly affect genetic structure, as well as reproductive strategy and genetic diversity. Sub-populations at mid-elevations had the highest yield of seed cones, lower levels of asexual reproduction and higher levels of genetic diversity. This may be due to the trade-off between elevational stress and anthropogenic disturbance at mid-elevation since there is greater elevational stress at higher-elevations and greater intensity of anthropogenic disturbance at lower-elevations. Our findings provide new insights into the finer scale genetic structure of alpine shrubs, which may improve the conservation and management of shrublands, a major vegetation type on the Hengduan Mountains and the Qinghai-Tibet Plateau.

13.
Genes (Basel) ; 13(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35885955

RESUMO

Comparing gene expressions among parasitic plants infecting different host species can have significant implications for understanding host-parasite interactions. Taxillus nigrans is a common hemiparasitic species in Southwest China that parasitizes a variety of host species. However, a lack of nucleotide sequence data to date has hindered transcriptome-level research on T. nigrans. In this study, the transcriptomes of T. nigrans individuals parasitizing four typical host species (Broussonetia papyrifera (Bpap), a broad-leaved tree species; Cryptomeria fortunei (Cfor), a coniferous tree species; Cinnamomum septentrionale (Csep), an evergreen tree species; and Ginkgo biloba (Gbil), a deciduous-coniferous tree species) were sequenced, and the expression profiles and metabolic pathways were compared among hosts. A total of greater than 400 million reads were generated in nine cDNA libraries. These were de novo assembled into 293823 transcripts with an N50 value of 1790 bp. A large number of differentially expressed genes (DEGs) were identified when comparing T. nigrans individuals on different host species: Bpap vs. Cfor (1253 DEGs), Bpap vs. Csep (864), Bpap vs. Gbil (517), Cfor vs. Csep (259), Cfor vs. Gbil (95), and Csep vs. Gbil (40). Four hundred and fifteen unigenes were common to all six pairwise comparisons; these were primarily associated with Cytochrome P450 and environmental adaptation, as determined in a KEGG enrichment analysis. Unique unigenes were also identified, specific to Bpap vs. Cfor (808 unigenes), Bpap vs. Csep (329 unigenes), Bpap vs. Gbil (87 unigenes), Cfor vs. Csep (108 unigenes), Cfor vs. Gbil (32 unigenes), and Csep vs. Gbil comparisons (23 unigenes); partial unigenes were associated with the metabolism of terpenoids and polyketides regarding plant hormone signal transduction. Weighted gene co-expression network analysis (WGCNA) revealed four modules that were associated with the hosts. These results provide a foundation for further exploration of the detailed molecular mechanisms involved in plant parasitism.


Assuntos
Erva-de-Passarinho , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Redes e Vias Metabólicas/genética , Transcriptoma/genética
14.
Evol Appl ; 15(6): 919-933, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782009

RESUMO

Habitat loss induced by climate warming is a major threat to biodiversity, particularly to threatened species. Understanding the genetic diversity and distributional responses to climate change of threatened species is critical to facilitate their conservation and management. Cupressus gigantea, a rare conifer found in the eastern Qinghai-Tibet Plateau (QTP) at 3000-3600 m.a.s.l., is famous for its largest specimen, the King Cypress, which is >55 m tall. Here, we obtained transcriptome data from 96 samples of 10 populations covering its whole distribution and used these data to characterize genetic diversity, identify conservation units, and elucidate genomic vulnerability to future climate change. After filtering, we identified 145,336, 26,103, and 2833 single nucleotide polymorphisms in the whole, putatively neutral, and putatively adaptive datasets, respectively. Based on the whole and putatively neutral datasets, we found that populations from the Yalu Tsangpo River (YTR) and Nyang River (NR) catchments could be defined as separate management units (MUs), due to distinct genetic clusters and demographic histories. Results of gradient forest models suggest that all populations of C. gigantea may be at risk due to the high expected rate of climate change, and the NR MU had a higher risk than the YTR MU. This study deepens our understanding of the complex evolutionary history and population structure of threatened tree species in extreme environments, such as dry river valleys above 3000 m.a.s.l. in the QTP, and provides insights into their susceptibility to global climate change and potential for adaptive responses.

15.
Glob Chang Biol ; 28(16): 4832-4844, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35561010

RESUMO

Global warming has been linked to declines in tree growth. However, it is unclear how the asymmetry in daytime and nighttime warming influences this response. Here, we use 2947 residual tree-ring width chronologies covering 32 species at 2493 sites, between 1901 and 2018, across the Northern Hemisphere, to analyze the effects of daytime and nighttime temperatures, precipitation, and drought stress on the radial growth of trees. We show that drought stress was primarily triggered by daytime rather than nighttime warming. The radial growth of trees was more sensitive to drought stress in warm regions than in cold regions, especially for angiosperms. Our study provides robust evidence that daytime warming is the primary driver of the observed declines in forest productivity related to drought stress and that daytime and nighttime warming should be considered separately when modelling forest-climate interactions and feedbacks in a future, warmer world.


Assuntos
Mudança Climática , Árvores , Clima , Secas , Florestas
16.
Mol Phylogenet Evol ; 172: 107485, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452840

RESUMO

Inferring accurate biogeographic history of plant taxa with an East Asia (EA)-North America (NA) is usually hindered by conflicting phylogenies and a poor fossil record. The current distribution of Chamaecyparis (false cypress; Cupressaceae) with four species in EA, and one each in western and eastern NA, and its relatively rich fossil record, make it an excellent model for studying the EA-NA disjunction. Here we reconstruct phylogenomic relationships within Chamaecyparis using > 1400 homologous nuclear and 61 plastid genes. Our phylogenomic analyses using concatenated and coalescent approaches revealed strong cytonuclear discordance and conflicting topologies between nuclear gene trees. Incomplete lineage sorting (ILS) and hybridization are possible explanations of conflict; however, our coalescent analyses and simulations suggest that ILS is the major contributor to the observed phylogenetic discrepancies. Based on a well-resolved species tree and four fossil calibrations, the crown lineage of Chamaecyparis is estimated to have originated in the upper Cretaceous, followed by diversification events in the early and middle Paleogene. Ancestral area reconstructions suggest that Chamaecyparis had an ancestral range spanning both EA and NA. Fossil records further indicate that this genus is a relict of the "boreotropical" flora, and that local extinctions of European species were caused by global cooling. Overall, our results unravel a complex evolutionary history of a Paleogene relict conifer genus, which may have involved ILS, hybridization and the extinction of local species.


Assuntos
Chamaecyparis , Cupressaceae , Traqueófitas , Evolução Biológica , Filogenia , Traqueófitas/genética
17.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35022759

RESUMO

Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.


Assuntos
Genoma de Planta , Populus , Hibridização Genética , Mutação , Populus/genética , Seleção Genética
18.
Mol Ecol ; 31(5): 1543-1561, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910340

RESUMO

Global climate changes during the Miocene may have created ample opportunities for hybridization between members of tropical and subtropical biomes at the boundary between these zones. Yet, very few studies have explored this possibility. The Yunnan-Guizhou Plateau (YGP) in Southwest China is a biodiversity hotspot for vascular plants, located in a transitional area between the floristic regions of tropical Southeast Asia and subtropical East Asia. The genus Eriobotrya (Rosaceae) comprises both tropical and subtropical taxa, with 12 species recorded in the YGP, making it a suitable basis for testing the hypothesis of between-biome hybridization. Therefore, we surveyed the evolutionary history of Eriobotrya by examining three chloroplast regions and five nuclear genes for 817 individuals (47 populations) of 23 Eriobotrya species (including 19 populations of 12 species in the YGP), plus genome re-sequencing of 33 representative samples. We concluded that: (1) phylogenetic positions for 16 species exhibited strong cytonuclear conflicts, most probably due to ancient hybridization; (2) the YGP is a hotspot for hybridization, with 11 species showing clear evidence of chloroplast capture; and (3) Eriobotrya probably originated in tropical Asia during the Eocene. From the Miocene onwards, the intensification of the Eastern Asia monsoon and global cooling may have shifted the tropical-subtropical boundary and caused secondary contact between species, thus providing ample opportunity for hybridization and diversification of Eriobotrya, especially in the YGP. Our study highlights the significant role that paleoclimate changes probably played in driving hybridization and generating rich species diversity in climate transition zones.


Assuntos
Eriobotrya , Evolução Biológica , China , Humanos , Filogenia , Filogeografia
19.
Cladistics ; 38(2): 187-203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34551153

RESUMO

The Eastern Asia (EA) - North America (NA) disjunction is a well-known biogeographic pattern of the Tertiary relict flora; however, few studies have investigated the evolutionary history of this disjunction using a phylogenomic approach. Here, we used 2369 single copy nuclear genes and nearly full plastomes to reconstruct the evolutionary history of the small Tertiary relict genus Thuja, which consists of five disjunctly distributed species. The nuclear species tree strongly supported an EA clade Thuja standishii-Thuja sutchuenensis and a "disjunct clade", where western NA species T. plicata is sister to an EA-eastern NA disjunct Thuja occidentalis-Thuja koraiensis group. Our results suggested that the observed topological discordance among the gene trees as well as the cytonuclear discordance is mainly due to incomplete lineage sorting, probably facilitated by the fast diversification of Thuja around the Early Miocene and the large effective population sizes of ancestral lineages. Furthermore, approximately 20% of the T. sutchuenensis nuclear genome is derived from an unknown ancestral lineage of Thuja, which might explain the close resemblance of its cone morphology to that of an ancient fossil species. Overall, our study demonstrates that single genes may not resolve interspecific relationships for disjunct taxa, and that more reliable results will come from hundreds or thousands of loci, revealing a more complex evolutionary history. This will steadily improve our understanding of their origin and evolution.


Assuntos
Cupressaceae , Thuja , Ásia , Fósseis , Filogenia , Thuja/genética
20.
Natl Sci Rev ; 9(12): nwac276, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36687562

RESUMO

Radiations are especially important for generating species biodiversity in mountainous ecosystems. The contribution of hybridization to such radiations has rarely been examined. Here, we use extensive genomic data to test whether hybridization was involved in evolutionary radiation within Rhododendron subgenus Hymenanthes, whose members show strong geographic isolation in the mountains of southwest China. We sequenced genomes for 143 species of this subgenus and 93 species of four other subgenera, and found that Hymenanthes was monophyletic and radiated during the late Oligocene to middle Miocene. Widespread hybridization events were inferred within and between the identified clades and subclades. This suggests that hybridization occurred both early and late during diversification of subgenus Hymenanthes, although the extent to which hybridization, speciation through mixing-isolation-mixing or hybrid speciation, accelerated the diversification needs further exploration. Cycles of isolation and contact in such and other montane ecosystems may have together promoted species radiation through hybridization between diverging populations and species. Similar radiation processes may apply to other montane floras in this region and elsewhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...