Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 595: 110084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692132

RESUMO

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Assuntos
Patos , Flavivirus , Doenças das Aves Domésticas , Proteínas não Estruturais Virais , Montagem de Vírus , Replicação Viral , Animais , Patos/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Flavivirus/genética , Flavivirus/fisiologia , Doenças das Aves Domésticas/virologia , Infecções por Flavivirus/virologia , Mutação
2.
J Antimicrob Chemother ; 79(6): 1385-1396, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629469

RESUMO

BACKGROUND: Riemerella anatipestifer encodes an iron acquisition system, but whether it encodes the iron efflux pump and its role in antibiotic resistance are largely unknown. OBJECTIVES: To screen and identify an iron efflux gene in R. anatipestifer and determine whether and how the iron efflux gene is involved in antibiotic resistance. METHODS: In this study, gene knockout, streptonigrin susceptibility assay and inductively coupled plasma mass spectrometry were used to screen for the iron efflux gene ietA. The MIC measurements, scanning electron microscopy and reactive oxygen species (ROS) detection were used to verify the role of IetA in aztreonam resistance and its mechanism. Mortality and colonization assay were used to investigate the role of IetA in virulence. RESULTS: The deletion mutant ΔietA showed heightened susceptibility to streptonigrin, and prominent intracellular iron accumulation was observed in ΔfurΔietA under excess iron conditions. Additionally, ΔietA exhibited increased sensitivity to H2O2-produced oxidative stress. Under aerobic conditions with abundant iron, ΔietA displayed increased susceptibility to the ß-lactam antibiotic aztreonam due to heightened ROS production. However, the killing efficacy of aztreonam was diminished in both WT and ΔietA under anaerobic or iron restriction conditions. Further experiments demonstrated that the efficiency of aztreonam against ΔietA was dependent on respiratory complexes Ⅰ and Ⅱ. Finally, in a duckling model, ΔietA had reduced virulence compared with the WT. CONCLUSION: Iron efflux is critical to alleviate oxidative stress damage and ß-lactam aztreonam killing in R. anatipestifer, which is linked by cellular respiration.


Assuntos
Antibacterianos , Aztreonam , Ferro , Testes de Sensibilidade Microbiana , Estresse Oxidativo , Riemerella , Estresse Oxidativo/efeitos dos fármacos , Ferro/metabolismo , Animais , Antibacterianos/farmacologia , Riemerella/efeitos dos fármacos , Riemerella/genética , Riemerella/patogenicidade , Riemerella/metabolismo , Aztreonam/farmacologia , Infecções por Flavobacteriaceae/microbiologia , Virulência , Resistência beta-Lactâmica , Patos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Estreptonigrina/farmacologia , Técnicas de Inativação de Genes , Doenças das Aves Domésticas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Poult Sci ; 103(4): 103446, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377689

RESUMO

Duck plague virus (DPV) is extremely infectious and lethal, so antiviral drugs are urgently needed. Our previous study shows that DPV infection with duck embryo fibroblast (DEF) induces reactive oxygen species (ROS) changes and promotes apoptosis. In this study, we tested the antiviral effect of the carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a common mitochondrial autophagy inducer. Our results demonstrated a dose-dependent anti-DPV effect of CCCP, CCCP-treatment blocked the intercellular transmission of DPV after infection, and we also proved that CCCP could have an antiviral effect up to 48 hpi. The addition of CCCP reversed the DPV-induced ROS changes, CCCP can inhibit virus-induced apoptosis; meanwhile, CCCP can affect mitochondrial fusion and activate mitophagy to inhibit DPV. In conclusion, CCCP can be an effective antiviral candidate against DPV.


Assuntos
Apoptose , Galinhas , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Espécies Reativas de Oxigênio , Antivirais/farmacologia
4.
Poult Sci ; 103(4): 103469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38335667

RESUMO

Tembusu virus (TMUV), an avian pathogenic flavivirus, has emerged as a significant threat to the duck industry in Southeast Asia, causing substantial economic losses. Due to the antibody-dependent enhancement (ADE) effect of TMUV subneutralizing antibodies, there is a pressing need to further develop new TMUV vaccine target antigens that ensure both safety and efficacy. Here, the TMUV non-structural protein 1 (NS1) as a target for development of effective anti-TMUV vaccines was unveiled. The amino acid sequences of TMUV NS1 exhibit a high degree of conservation across different strains (92.63-100%). To investigate the potential of TMUV NS1 as a vaccine target, the TMUV NS1-based plasmids were constructed and identified the C-terminal 30 amino acids residues of TMUV E (EC30) as an effective signal peptide for promoting NS1 expression and secretion. Subsequently, the plasmid pVAX1-EC30-NS1 was employed to immunize ducks, resulting in specific anti-NS1 IgG responses being stimulated, while without inducing anti-TMUV neutralizing antibodies. Furthermore, the cellular immune responses triggered by the TMUV NS1 were evaluated, observing a notable increase in lymphocyte proliferation at 4 wk and 6 wk postinjection with the pVAX1-EC30-NS1. Additionally, there was a significant up-regulation of NS1-specific Il-4 and Ifnγ levels at these time points. Following this, ducks from different groups were challenged with TMUV, and remarkably, those immunized with the NS1 vaccine displayed significantly lower viral copies both at 3 d postinfection (dpi) and 7 dpi (P < 0.05) compared to ducks immunized with the control vector. Notably, the NS1 demonstrated remarkable protection against TMUV challenge without causing severe gross lesions. Collectively, these findings highlighted the impressive immunogenicity and protectivity of the TMUV NS1. Consequently, NS1 holds great promise as a novel antigen target for the development of efficient and safe TMUV vaccines.


Assuntos
Infecções por Flavivirus , Flavivirus , Doenças das Aves Domésticas , Vacinas , Animais , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/veterinária , Galinhas , Patos , Anticorpos Antivirais/metabolismo , Desenvolvimento de Vacinas
5.
Vet Res ; 55(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172999

RESUMO

During the replication process, the herpesvirus genome forms the head-to-tail linked concatemeric genome, which is then cleaved and packaged into the capsid. The cleavage and packing process is carried out by the terminase complex, which specifically recognizes and cleaves the concatemeric genome. This process is governed by a cis-acting sequence in the genome, named the a sequence. The a sequence and genome cleavage have been described in some herpesviruses, but it remains unclear in duck plague virus. In this study, we analysed the location, composition, and conservation of a sequence in the duck plague virus genome. The structure of the DPV genome has an a sequence of (DR4)m-(DR2)n-pac1-S termini (32 bp)-L termini (32 bp)-pac2, and the length is 841 bp. Direct repeat (DR) sequences are conserved in different DPV strains, but the number of DR copies is inconsistent. Additionally, the typical DR1 sequence was not found in the DPV a sequence. The Pac1 and pac2 motifs are relatively conserved between DPV and other herpesviruses. Cleavage of the DPV concatemeric genome was detected, and the results showed that the DPV genome can form a concatemer and is cleaved into a monomer at a specific site. We also established a sensitive method, TaqMan dual qRT‒PCR, to analyse genome cleavage. The ratio of concatemer to total viral genome was decreased during the replication process. These results will be critical for understanding the process of DPV genome cleavage, and the application of TaqMan dual qRT‒PCR will greatly facilitate more in-depth research.


Assuntos
Patos , Herpesviridae , Animais , Patos/genética , DNA Viral/química , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Herpesviridae/genética , Genoma Viral
6.
BMC Genomics ; 25(1): 57, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216873

RESUMO

BACKGROUND: The disease caused by Riemerella anatipestifer (R. anatipestifer, RA) results in large economic losses to the global duck industry every year. Serovar-related genomic variation, such as the O-antigen and capsular polysaccharide (CPS) gene clusters, has been widely used for serotyping in many gram-negative bacteria. RA has been classified into at least 21 serovars based on slide agglutination, but the molecular basis of serotyping is unknown. In this study, we performed a pan-genome-wide association study (Pan-GWAS) to identify the genetic loci associated with RA serovars. RESULTS: The results revealed a significant association between the putative CPS synthesis gene locus and the serological phenotype. Further characterization of the CPS gene clusters in 11 representative serovar strains indicated that they were highly diverse and serovar-specific. The CPS gene cluster contained the key genes wzx and wzy, which are involved in the Wzx/Wzy-dependent pathway of CPS synthesis. Similar CPS loci have been found in some other species within the family Weeksellaceae. We have also shown that deletion of the wzy gene in RA results in capsular defects and cross-agglutination. CONCLUSIONS: This study indicates that the CPS synthesis gene cluster of R. anatipestifer is a serotype-specific genetic locus. Importantly, our finding provides a new perspective for the systematic analysis of the genetic basis of the R anatipestifer serovars and a potential target for establishing a complete molecular serotyping scheme.


Assuntos
Doenças das Aves Domésticas , Riemerella , Animais , Sorogrupo , Estudo de Associação Genômica Ampla , Riemerella/genética , Patos/genética , Patos/microbiologia , Doenças das Aves Domésticas/microbiologia
7.
Microbiol Spectr ; 12(2): e0313223, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38169285

RESUMO

Riemerella anatipestifer (R. anatipestifer) is an important pathogen that causes severe systemic infections in domestic ducks, resulting in substantial economic losses for China's waterfowl industry. Controlling R. anatipestifer with antibiotics is extremely challenging due to its multidrug resistance. Notably, large-scale studies on antimicrobial resistance (AMR) and the corresponding genetic determinants in R. anatipestifer remain scarce. To solve this dilemma, more than 400 nonredundant R. anatipestifer isolates collected from 22 provinces in China between 1994 and 2021 were subjected to broth dilution antibiotic susceptibility assays, and their resistance-associated genetic determinants were characterized by whole-genome sequencing. While over 90% of the isolates was resistant to sulfamethoxazole, kanamycin, gentamicin, ofloxacin, norfloxacin, and trimethoprim, 88.48% of the isolates was resistant to the last-resort drug (tigecycline). Notably, R. anatipestifer resistance to oxacillin, norfloxacin, ofloxacin, and tetracycline was found to increase relatively over time. Genome-wide analysis revealed the alarmingly high prevalence of blaOXA-like (93.05%) and tet(X) (90.64%) genes and the uneven distribution of resistance genes among lineages. Overall, this study reveals a serious AMR situation regarding R. anatipestifer in China, with a high prevalence and high diversity of antimicrobial resistance genes, providing important data for the rational use of antibiotics in veterinary practice.IMPORTANCERiemerella anatipestifer (R. anatipestifer), an important waterfowl pathogen, has caused substantial economic losses worldwide, especially in China. Antimicrobial resistance (AMR) is a major challenge in controlling this pathogen. Although a few studies have reported antimicrobial resistance in R. anatipestifer, comprehensive data remain a gap. This study aims to address the lack of information on R. anatipestifer AMR and its genetic basis. By analyzing more than 400 isolates collected over two decades, this study reveals alarming levels of resistance to several antibiotics, including drugs of last resort. The study also revealed the lineage-specificity of resistance profiles and resistance gene profiles. Overall, this study provides new insights and updated data support for understanding AMR and its genetic determinants in R. anatipestifer.


Assuntos
Antibacterianos , Doenças das Aves Domésticas , Riemerella , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Norfloxacino , Ofloxacino , Doenças das Aves Domésticas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA