Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Water Res ; 257: 121657, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663214

RESUMO

The coastal urban region is generally considered an atmospheric receptor for terrestrial and marine input materials, and rainfall chemistry can trace the wet scavenging process of these materials. Fast urbanization in China's east coastal areas has greatly altered the rainwater chemistry. However, the chemical variations, determinants, and sources of rainfall are unclear. Therefore, the typical coastal city of Fuzhou was selected for 1-year rainwater sampling and inorganic ions were detected to explore above problems. The findings depicted that rainwater ions in Fuzhou were slightly different from those in other coastal cities. Although NO3-, SO42-, Ca2+ and NH4+ dominated the rainwater ions, the marine input Cl- (22 %) and Na+ (11 %) also contributed a considerable percentage to the rainwater ions. Large differences in ion concentrations (2∼28 times) were found in monthly scale due to the rainfall amount. Both natural and anthropogenic determinants influenced the rainwater ions in coastal cities, such as SO2 emission, air SO2 and PM10 content on rainwater SO42-, NO3-, and Ca2+, and soot & dust emission on rainwater SO42-, NO3-, indicating the vital contribution of human activities. Stoichiometry and positive matrix factorization-based sources identification indicated that atmospheric dust/particles were the primary contributor of Ca2+ (83.3 %) and F- (83.7 %), and considerable contributor of SO42- (39.5 %), NO3- (38.3 %) and K+ (41.5 %). Anthropogenic origins, such as urban waste volatilization and fuel combustion emission, contributed 95 % of NH4+, 54.5 % of NO3- and 41.9 % of SO42-, and the traffic sources contribution was relatively higher than fixed emission sources. The marine input represented the vital source of Cl- (77.7 %), Na+ (84.9 %), and Mg2+ (55.3 %). This work highlights the significant influence of urban human activities and marine input on rainwater chemicals and provides new insight into the material cycle between the atmosphere and earth-surface in coastal city.


Assuntos
Cidades , Chuva , China , Humanos , Monitoramento Ambiental , Urbanização , Atividades Humanas , Poluentes Atmosféricos/análise
2.
Nanoscale Res Lett ; 6(1): 358, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21711883

RESUMO

A graphene nano-ribbon in the zigzag edge geometry exhibits a specific type of gapless edge modes with a partly flat band dispersion. We argue that the appearance of such edge modes are naturally understood by regarding graphene as the gapless limit of a Z2 topological insulator. To illustrate this idea, we consider both Kane-Mele (graphene-based) and Bernevig-Hughes-Zhang models: the latter is proposed for HgTe/CdTe 2D quantum well. Much focus is on the role of valley degrees of freedom, especially, on how they are projected onto and determine the 1D edge spectrum in different edge geometries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA