Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 176: 108562, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38728993

RESUMO

We attempted to investigate the role of HOXB7 in tumor progression and evolution by means of an extensive computer screening analysis of various cancer types. We performed univariate Cox regression and Kaplan-Meier survival analyses to assess the impact of HOXB7 on overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in different types of cancer. Furthermore, we examined the relationship between HOXB7 and several clinical features: tumor microenvironment, immune regulatory genes, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). We performed gene set enrichment analysis to gain deeper insights into the potential molecular mechanisms of HOXB7, and validated our findings through functional assays in cells, including methyl thiazolyl tetrazolium cytotoxicity and Transwell invasion assays. HOXB7 expression was associated with different clinical characteristics in numerous malignancies. Higher HOXB7 expression was associated with worse OS, DSS, and PFI in some cancer types. In particular, HOXB7 expression was favorably associated with immune cell infiltration, immune regulatory genes, immunological checkpoints, TMB, and MSI in malignancies. Furthermore, we identified a strong link between copper death-associated gene expression and HOXB7 expression. According to the findings of this study, HOXB7 might serve as an appealing focus for tumor diagnosis and immunotherapy and a prospective indicator of prognosis.

2.
J Transl Med ; 21(1): 895, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071321

RESUMO

Chronic lung diseases include an array of conditions that impact airways and lung structures, leading to considerable societal burdens. Mesenchymal stem cells (MSCs) and their exosomes (MSC-exos) can be used for cell therapy and exhibit a diverse spectrum of anti-inflammatory, antifibrotic, and immunomodulatory properties. Engineered MSC-exos possesses enhanced capabilities for targeted drug delivery, resulting in more potent targeting effects. Through various engineering modifications, these exosomes can exert many biological effects, resulting in specific therapeutic outcomes for many diseases. Moreover, engineered stem cell exosomes may exhibit an increased capacity to traverse physiological barriers and infiltrate protected lesions, thereby exerting their therapeutic effects. These characteristics render them a promising therapeutic agent for chronic pulmonary diseases. This article discusses and reviews the strategies and mechanisms of engineered MSC-exos in the treatment of chronic respiratory diseases based on many studies to provide new solutions for these diseases.


Assuntos
Exossomos , Pneumopatias , Células-Tronco Mesenquimais , Humanos , Pneumopatias/terapia
3.
Sci Adv ; 9(11): eadg1137, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921051

RESUMO

Discovering the secrets of diseases from tear extracellular vesicles (EVs) is well-recognized and appreciated. However, a precise understanding of the interaction network between EV populations and their biogenesis from our body requires more in-depth and systematic analysis. Here, we report the biological profiles of different-size tear EV subsets from healthy individuals and the origins of EV proteins. We have identified about 1800 proteins and revealed the preferential differences in the biogenesis among distinct subsets. We observe that eye-related proteins that maintain retinal homeostasis and regulate inflammation are preferentially enriched in medium-size EVs (100 to 200 nm) fractions. Using universal analysis in combination with the Human Protein Atlas consensus dataset, we found the genesis of tear EV proteins with 37 tissues and 79 cell types. The proteins related to retinal neuronal cells, glial cells, and blood and immune cells are selectively enriched among EV subsets. Our studies in heterogeneous tear EVs provide building blocks for future transformative precision molecular diagnostics and therapeutics.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Inflamação/metabolismo
4.
Respir Res ; 24(1): 78, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915149

RESUMO

BACKGROUND: Circular RNAs (circRNAs), a novel class of non-coding RNAs, play an important regulatory role in pulmonary arterial hypertension (PAH); however, the specific mechanism is rarely studied. In this study, we aimed to discover functional circRNAs and investigate their effects and mechanisms in hypoxia-induced pulmonary vascular remodelling, a core pathological change in PAH. METHODS: RNA sequencing was used to illustrate the expression profile of circRNAs in hypoxic PAH. Bioinformatics, Sanger sequencing, and quantitative real-time PCR were used to identify the ring-forming characteristics of RNA and analyse its expression. Then, we established a hypoxia-induced PAH mouse model to evaluate circRNA function in PAH by echocardiography and hemodynamic measurements. Moreover, microRNA target gene database screening, fluorescence in situ hybridisation, luciferase reporter gene detection, and western blotting were used to explore the mechanism of circRNAs. RESULTS: RNA sequencing identified 432 differentially expressed circRNAs in mouse hypoxic lung tissues. Our results indicated that circ-Ntrk2 is a stable cytoplasmic circRNA derived from Ntrk2 mRNA and frequently upregulated in hypoxic lung tissue. We further found that circ-Ntrk2 sponges miR-296-5p and miR-296-5p can bind to the 3'-untranslated region of transforming growth factor-ß1 (TGF-ß1) mRNA, thereby attenuating TGF-ß1 translation. Through gene knockout or exogenous expression, we demonstrated that circ-Ntrk2 could promote PAH and vascular remodelling. Moreover, we verified that miR-296-5p overexpression alleviated pulmonary vascular remodelling and improved PAH through the TGF-ß1/p38 MAPK pathway. CONCLUSIONS: We identified a new circRNA (circ-Ntrk2) and explored its function and mechanism in PAH, thereby establishing potential targets for the diagnosis and treatment of PAH. Furthermore, our study contributes to the understanding of circRNA in relation to PAH.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , RNA Circular , Animais , Camundongos , Proliferação de Células , Hipertensão Pulmonar Primária Familiar , Hipertensão Pulmonar/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipertensão Arterial Pulmonar/genética , Receptor trkB , RNA Circular/genética , RNA Mensageiro , Fator de Crescimento Transformador beta1/genética , Remodelação Vascular/genética
5.
Dis Markers ; 2022: 5398157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246557

RESUMO

Background: Sustained hypoxia can trigger a progressive rise in pulmonary artery pressure and cause serious pulmonary diseases. Macrophages play important roles along the progression of pulmonary hypertension. However, the state of macrophage polarization during the early stage of pulmonary hypertension is unclear. Methods: Unlike traditional sequencing method, single-cell sequencing can accurately distinguish among cell types and better understand cell-to-cell relationships. In this study, we investigated the polarization of macrophages in pulmonary hypertension via single-cell RNA-sequencing in a mice hypoxia model, which was then validated in patients with pulmonary hypertension. Results: We identified that the intermittent exposure to hypoxic conditions could lead to the production of more M2-type macrophages than M1-type macrophages in a mouse model. Further validation analysis was performed by analyzing lung tissue of patients with pulmonary hypertension, revealing that the number of disease-associated M2 macrophages was substantially increased. Conclusions: In this study, the active anti-inflammatory response of macrophage involved in pulmonary hypertension has been identified, suggesting that intervention against the polarization of macrophages to the M2 type may be a potential way to reduce chronic pulmonary inflammation, pulmonary vascular remodeling, and artery pressure. Thus, investigation of macrophage polarization associated with hypoxia could help us better understand disease mechanism and craft effective prevention strategies and approaches.


Assuntos
Hipertensão Pulmonar , Animais , Anti-Inflamatórios , Hipertensão Pulmonar/genética , Hipóxia/genética , Hipóxia/metabolismo , Macrófagos/metabolismo , Camundongos , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...