Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 119(1): 126-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537557

RESUMO

In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.


Assuntos
Yarrowia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
2.
mSphere ; 7(6): e0045022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409080

RESUMO

The yeast-to-filament transition is an important cellular response to environmental stimulations in dimorphic fungi. In addition to activators, there are repressors in the cells to prevent filament formation, which is important to keep the cells in the yeast form when filamentation is not necessary. However, very few repressors of filamentation are known so far. Here, we identify a novel repressor of filamentation in the dimorphic yeast Yarrowia lipolytica, Fts2, which is a C2H2-type zinc finger transcription factor. We show that fts2Δ cells exhibited increased filamentation under mild filament-inducing conditions and formed filaments under non-filament-inducing conditions. We also show that Fts2 interacts with YlSsn6, component of the Tup1-Ssn6 transcriptional corepressor, and Fts2-LexA represses a lexAop-PYlACT1-lacZ reporter in a Tup1-Ssn6-dependent manner, suggesting that Fts2 has transcriptional repressor activity and represses gene expression via Tup1-Ssn6. In addition, we show that Fts2 represses a large number of cell wall protein genes and transcription factor genes, some of which are implicated in the filamentation response. Interestingly, about two-thirds of Fts2-repressed genes are also repressed by Tup1-Ssn6, suggesting that Fts2 may repress the bulk of its target genes via Tup1-Ssn6. Lastly, we show that Fts2 expression is downregulated in response to alkaline pH and the relief of negative control by Fts2 facilitates the induction of filamentation by alkaline pH. IMPORTANCE The repressors of filamentation are important negative regulators of the yeast-to-filament transition. However, except in Candida albicans, very few repressors of filamentation are known in dimorphic fungi. More importantly, how they repress filamentation is often not clear. In this paper, we report a novel repressor of filamentation in Y. lipolytica. Fts2 is not closely related in amino acid sequence to CaNrg1 and Rfg1, two major repressors of filamentation in C. albicans, yet it represses gene expression via the transcriptional corepressor Tup1-Ssn6, similar to CaNrg1 and Rfg1. Using transcriptome sequencing, we determined the whole set of genes regulated by Fts2 and identified the major targets of Fts2 repression, which provide clues to the mechanism by which Fts2 represses filamentation. Our results have important implications for understanding the negative control of the yeast-to-filament transition in dimorphic fungi.


Assuntos
Fatores de Transcrição , Yarrowia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Dedos de Zinco , Proteínas Correpressoras
3.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011684

RESUMO

Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolyticaIMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Yarrowia/crescimento & desenvolvimento , Yarrowia/genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hifas/genética , Yarrowia/fisiologia
4.
Curr Genet ; 66(1): 245-261, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31321487

RESUMO

Msn2/Msn4-family zinc finger transcription factors play important roles in stress response in yeast. However, some members of this family show significant functional divergence in different species. Here, we report that in the dimorphic yeast Yarrowia lipolytica, the Msn2/Msn4-like protein Mhy1 is a key regulator of yeast-to-hypha dimorphic transition but not stress response. Both MHY1 deletion and overexpression affect filamentation. In contrast, YlMsn4, the other Msn2/Msn4-like protein, regulates tolerance to acid-induced stress. We show that MHY1 has an unusually long (about 3800 bp) promoter featuring an upstream located enhancer and a double stress response element (STRE) motif, the latter of which mediates Mhy1's regulation on its own transcription. Transcriptome profiling conducted in wild-type strain, mhy1Δ mutant and MHY1-overexpressing mutant revealed about 100 genes that are highly differentially expressed (≥ 5-fold) in each of the 2 mutants compared to the wild-type strain. The largest group of genes downregulated in mhy1Δ mutant encodes cell wall proteins or enzymes involved in cell wall organization, suggesting that Mhy1 may regulate dimorphic transition by controlling these cell wall genes. We confirmed that the genes YALI0C23452, YALI0C15268 and YALI0B09955 are directly regulated by Mhy1. We also characterized the Mhy1 consensus binding site as 5'-WNAGGGG-3' (W = A or T; N = A, T, G or C). These results provide new insight in the functions of Msn2/Msn4-family transcription factors in fungi and the mechanism by which Mhy1 regulates dimorphic transition.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Yarrowia/citologia , Yarrowia/fisiologia , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Mutação , Fenótipo , Ligação Proteica , Elementos de Resposta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...