Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14628, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262801

RESUMO

Lithium-sulfur batteries are promising technologies for powering flexible devices due to their high energy density, low cost and environmental friendliness, when the insulating nature, shuttle effect and volume expansion of sulfur electrodes are well addressed. Here, we report a strategy of using foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for binder-free advanced lithium-sulfur batteries through a facile confinement conversion. The carbon nanotubes interpenetrate through the metal-organic frameworks crystal and interweave the electrode into a stratified structure to provide both conductivity and structural integrity, while the highly porous metal-organic frameworks endow the electrode with strong sulfur confinement to achieve good cyclability. These hierarchical porous interpenetrated three-dimensional conductive networks with well confined S8 lead to high sulfur loading and utilization, as well as high volumetric energy density.

2.
ChemSusChem ; 10(7): 1346-1350, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28296052

RESUMO

The powder form and low photoluminescence quantum yield (PLQY) of fluorescent metal-organic frameworks (MOFs) present a serious obstacle to fabricating high-efficiency film-like lighting devices. Here, we present a facile way to produce thin films of CdSex S1-x /ZnS quantum dots (QDs)@ZIF-8 with high PLQY by encapsulating red, green, and blue CdSex S1-x /ZnS QDs in ZIF-8 through a one-pot solid-confinement conversion process. The QDs@ZIF-8 thin film emits warm white light with good color quality and presents good thermal stability and long-term durability.


Assuntos
Hidróxidos/química , Cimento de Policarboxilato/química , Pontos Quânticos/química , Semicondutores , Compostos de Zinco/química , Compostos de Cádmio/química , Cor , Desenho de Equipamento , Modelos Moleculares , Conformação Molecular , Compostos de Selênio/química , Sulfetos/química
3.
Angew Chem Int Ed Engl ; 55(48): 15120-15124, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27805300

RESUMO

Extraction of lithium ions from salt-lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST-1 metal-organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST-1-6.7, with unique anchored three-dimensional sulfonate networks, shows a very high Li+ conductivity of 5.53×10-4  S cm-1 at 25 °C, 1.89×10-3  S cm-1 at 70 °C, and Li+ flux of 6.75 mol m-2 h-1 , which are five orders higher than that of the pristine HKUST-1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li+ , Na+ , K+ , and Mg2+ ions to the sulfonate groups, the PSS@HKUST-1-6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li+ /Na+ , Li+ /K+ , Li+ /Mg2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li+ extraction membranes.

4.
Chemistry ; 21(43): 15127-32, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26471435

RESUMO

Hierarchical porous materials are promising for catalyst, separation and sorption applications. A ligand-assisted etching process is developed for template-free synthesis of hierarchical mesoporous MOFs as single crystals and well-intergrown membranes at 40 °C. At 223 K, the hierarchical porous structures significantly improve the CO2 capture capacity of HKUST-1 by more than 44 % at pressures up to 20 kPa and 13 % at 100 kPa. Even at 323 K, the enhancement of CO2 uptake is above 25 % at pressures up to 20 kPa and 7 % at 100 kPa. The mesoporous structures not only enhance the CO2 uptake capacity but also improve the diffusion and mass transportation of CO2 . Similarly, well-intergrown mesoporous HKUST-1 membranes are synthesized, which hold the potential for film-like porous devices. Mesoporous MOF-5 crystals are also obtained by a similar ligand-assisted etching process. This may provide a facile way to prepare hierarchical porous MOF single crystals and membranes for wide-ranging applications.

5.
ACS Appl Mater Interfaces ; 7(3): 1795-803, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25559042

RESUMO

Two dimensional (2-D) Ti3C2Tx nanosheets are obtained by etching bulk Ti3C2Tx powders in HF solution and delaminating ultrasonically, which exhibit excellent removal capacity for toxic Cr(VI) from water, due to their high surface area, well dispersibility, and reductivity. The Ti3C2Tx nanosheets delaminated by 10% HF solution present more efficient Cr(VI) removal performance with capacity of 250 mg g(-1), and the residual concentration of Cr(VI) in treated water is less than 5 ppb, far below the concentration (0.05 ppm) of Cr(VI) in the drinking water standard recommended by the World Health Organization. This kind of 2-D Ti3C2Tx nanosheet can not only remove Cr(VI) rapidly and effectively in one step from aqueous solution by reducing Cr(VI) to Cr(III) but also adsorb the reduced Cr(III) simultaneously. Furthermore, these reductive 2-D Ti3C2Tx nanosheets are generally explored to remove other oxidant agents, such as K3[Fe(CN)6], KMnO4, and NaAuCl4 solutions, by converting them to low oxidation states. These significantly expand the potential applications of 2-D Ti3C2Tx nanosheets in water treatment.

6.
Nat Commun ; 5: 5532, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25405547

RESUMO

Porous metal-organic frameworks (MOFs) demonstrate great potential for numerous applications. Although hetero-functional components have been encapsulated within MOF crystalline particles, the uniform incorporation of functional species with different sizes, shapes and functions in MOF thin films with dual properties, especially at room temperature and without the degradation of the MOF framework, remains a significant challenge towards further enriching their functions for various purposes. Here we report a general method that can rapidly encapsulate diverse functional components, including small ions, micrometre-sized particles, inorganic nanoparticles and bioactive proteins, in MOF thin films at room temperature via a metal-hydroxide-nanostrand-assisted confinement technique. These functional component-encapsulated MOF composite thin films exhibit synergistic and size-selective catalytic, bio-electrochemical, conductive and flexible functionalities that are desirable for thin film devices, including catalytic membrane reactors, biosensors and flexible electronic devices.

7.
ACS Appl Mater Interfaces ; 6(18): 15676-85, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25184955

RESUMO

Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

8.
ACS Nano ; 8(6): 6304-11, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24853383

RESUMO

Two-dimensional layered materials have joined in the family of size-selective separation membranes recently. Here, chemically exfoliated tungsten disulfide (WS2) nanosheets are assembled into lamellar thin films and explored as an ultrafast separation membrane for small molecules with size of about 3 nm. Layered WS2 membranes exhibit 5- and 2-fold enhancement in water permeance of graphene oxide membranes and MoS2 laminar membranes with similar rejection, respectively. To further increase the water permeance, ultrathin nanostrands are used as templates to generate more fluidic channel networks in the WS2 membrane. The water permeation behavior and separation performance in the pressure loading-unloading process reveal that the channels created by the ultrathin nanostrands are cracked under high pressure and result in a further 2-fold increase of the flux without significantly degrading the rejection for 3 nm molecules. This is supported by finite-element-based mechanical simulation. These layered WS2 membranes demonstrate up to 2 orders of magnitude higher separation performance than that of commercial membranes with similar rejections and hold the promising potential for water purification.

9.
ACS Appl Mater Interfaces ; 6(6): 4473-9, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24598555

RESUMO

The scalable fabrication of continuous and defect-free metal-organic framework (MOF) films on the surface of polymeric hollow fibers, departing from ceramic supported or dense composite membranes, is a huge challenge. The critical way is to reduce the growth temperature of MOFs in aqueous or ethanol solvents. In the present work, a pressure-assisted room temperature growth strategy was carried out to fabricate continuous and well-intergrown HKUST-1 films on a polymer hollow fiber by using solid copper hydroxide nanostrands as the copper source within 40 min. These HKUST-1 films/polyvinylidenefluoride (PVDF) hollow fiber composite membranes exhibit good separation performance for binary gases with selectivity 116% higher than Knudsen values via both inside-out and outside-in modes. This provides a new way to enable for scale-up preparation of HKUST-1/polymer hollow fiber membranes, due to its superior economic and ecological advantages.

10.
Nat Commun ; 4: 2979, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24352165

RESUMO

Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

11.
ACS Appl Mater Interfaces ; 5(19): 9850-5, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24010720

RESUMO

Flexible free-standing CuO nanosheets (NSs)/reduced graphene oxide (r-GO) hybrid lamellar paper was fabricated through vacuum filtration and hydrothermal reduction processes. A unique three-dimensional nanoporous network was achieved with CuO NSs homogeneously embedded within the r-GO layers. This hybrid lamellar composite paper was examined as a binder-free anode for lithium ion batteries, and demonstrated excellent cyclic retention with the specific capacity of 736.8 mA h g(-1) after 50 cycles. This is much higher than 219.1 mA h g(-1) of the pristine CuO NSs and 60.2 mA h g(-1) of r-GO film at the same current density of 67 mA g(-1). The high capacitance and excellent cycling performance were generated from the integrated nanoporous structure compose of CuO NSs spaced r-GO layers, which offered an efficient electrically conducting channels, favored electrolyte penetration, and buffered to the volume variations during the lithiation and delithiation process. These outstanding electrochemical capabilities of CuO NSs/r-GO paper holds great promise for flexible binder-free anode for lithium ion batteries.

12.
Nanoscale ; 5(19): 9134-40, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23913017

RESUMO

CuO nanosheets (NSs)/reduced graphene oxide (rGO) hybrid lamellar films were prepared by vacuum filtration of CuO NSs/GO composite dispersions, followed by hydrothermal reduction. The CuO NSs/GO composite dispersions were assembled electrostatically by mixing a negatively charged GO sheets aqueous solution with a positively charged CuO NSs aqueous dispersion at room temperature. The prepared CuO NSs/rGO hybrid lamellar films exhibited a specific capacitance of 163.7 F g(-1), which is much higher than the 69.7 F g(-1) of CuO NSs and 66.0 F g(-1) of rGO. The effective specific capacitance was 82.5 F g(-1) after 1000 cycles, which was more than two times the 32.7 F g(-1) of CuO NSs electrodes. The synergistic redox activity of the CuO NSs, in combination with the high electronic conductivity of the rGO and the unique CuO NSs spaced sandwich-like porous structures, dominated the excellent capacitance of CuO NSs/rGO hybrid lamellar films. The sandwiched, lamellar, porous structures not only provide plenty of paths for electrolyte-ion access to the CuO NSs but also expose the rGO sheets to the electrolyte as much as possible. This process provides a potential way to synthesise metal oxide/GO composite electrodes for capacitors.

13.
Chemistry ; 19(36): 11883-6, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23897722

RESUMO

Great anchors and seeds: Hetero-seeding growth processes and anchored nanorod arrays were successfully utilized in the synthesis of HKUST-1 membranes. These arrays were firmly anchored on porous substrates by using a MIL-110 nanorod array as both the anchor and seed. The resulting HKUST-1 membranes demonstrated good separation factors for binary gases exceeding the Knudson selectivity.

14.
Dalton Trans ; 42(36): 13265-72, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23887280

RESUMO

[Fe(CN)6](4-) decorated mesoporous gelatin films, acting as colorimetric sensors and sorbents for heavy metal ions, were prepared by incorporating [Fe(CN)6](4-) ions into the mesoporous gelatin films through electrostatic interaction. Gelatin-Prussian blue (PB) and gelatin-PB analogue composite films were successfully synthesized by immersing the [Fe(CN)6](4-) decorated gelatin films into aqueous solutions of metal ions, such as Fe(3+), Cu(2+), Co(2+), Pb(2+) and Cd(2+) (all as nitrates). The in situ formation process of PB or its analogues in the films was investigated using quartz crystal microbalance (QCM) measurements. According to the different colors of the PB nanoparticles and its analogues, the [Fe(CN)6](4-) decorated mesoporous gelatin films demonstrated colorimetric sensor abilities for detecting the corresponding metal ions by the naked eye with sufficient sensitivity at 1 ppm level and a quite short response time of 5 minutes. Moreover, due to the [Fe(CN)6](4-) functionality and other functional groups of gelatin itself, this [Fe(CN)6](4-) decorated mesoporous gelatin film shows a tens times higher adsorption ability for heavy metal ions in water than that of activated carbon. Due to both the efficient detection and high adsorption ability for heavy metal ions, this film has wide potential applications for the detection and purification of heavy metal ions from polluted water.

15.
Chem Commun (Camb) ; 49(53): 5963-5, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23715402

RESUMO

For the first time, pressure, salt concentration and pH demonstrated advantages for tuning the nanochannels within lamellar graphene oxide (LGO) membranes to control the separation of small molecules. This provides a new avenue for designing and engineering efficient LGO membranes for molecular separation.

16.
Chem Commun (Camb) ; 49(50): 5666-8, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23682358

RESUMO

Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.

17.
Chem Rec ; 13(1): 14-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23097352

RESUMO

Nanofibrous materials have been extensively investigated and used as building blocks for various nanodevices, due to their unique one-dimensional structures. Recently, novel membranes constructed by using nanofibers have been reported by various techniques. Here, we will give a critical review of our recent research on the general solution processed unique sub-3 nm thin metal hydroxide nanofibers and their application for constructing ultrathin separation membranes via filtration technique. The superior separation performances of these membranes hold the promising future for pressure-driven membrane separation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...