Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(7): 3510-3521, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38452220

RESUMO

N6-Methyladenosine (m6A) is the most abundant chemical modification occurring on eukaryotic mRNAs, and has been reported to be involved in almost all stages of mRNA metabolism. The distribution of m6A sites is notably asymmetric along mRNAs, with a strong preference toward the 3' terminus of the transcript. How m6A regional preference is shaped remains incompletely understood. In this study, by performing m6A-seq on chromatin-associated RNAs, we found that m6A regional preference arises during transcription. Nucleosome occupancy is remarkedly increased in the region downstream of m6A sites, suggesting an intricate interplay between m6A methylation and nucleosome-mediated transcriptional dynamics. Notably, we found a remarkable slowdown of Pol-II movement around m6A sites. In addition, inhibiting Pol-II movement increases nearby m6A methylation levels. By analyzing massively parallel assays for m6A, we found that RNA secondary structures inhibit m6A methylation. Remarkably, the m6A sites associated with Pol-II pausing tend to be embedded within RNA secondary structures. These results suggest that Pol-II pausing could affect the accessibility of m6A motifs to the methyltransferase complex and subsequent m6A methylation by mediating RNA secondary structure. Overall, our study reveals a crucial role of transcriptional dynamics in the formation of m6A regional preference.


Assuntos
Adenosina , Adenosina/análogos & derivados , RNA Polimerase II , RNA Mensageiro , Transcrição Gênica , Adenosina/metabolismo , Metilação , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Polimerase II/metabolismo , Humanos , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Nucleossomos/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Cromatina/metabolismo , Cromatina/genética , Cromatina/química
2.
Nat Struct Mol Biol ; 30(11): 1816-1825, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37957305

RESUMO

A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Saccharomyces cerevisiae , Humanos , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Biossíntese de Proteínas
3.
Mol Cell ; 83(18): 3347-3359.e9, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37647899

RESUMO

The amino acid cysteine and its oxidized dimeric form cystine are commonly believed to be synonymous in metabolic functions. Cyst(e)ine depletion not only induces amino acid response but also triggers ferroptosis, a non-apoptotic cell death. Here, we report that unlike general amino acid starvation, cyst(e)ine deprivation triggers ATF4 induction at the transcriptional level. Unexpectedly, it is the shortage of lysosomal cystine, but not the cytosolic cysteine, that elicits the adaptative ATF4 response. The lysosome-nucleus signaling pathway involves the aryl hydrocarbon receptor (AhR) that senses lysosomal cystine via the kynurenine pathway. A blockade of lysosomal cystine efflux attenuates ATF4 induction and sensitizes ferroptosis. To potentiate ferroptosis in cancer, we develop a synthetic mRNA reagent, CysRx, that converts cytosolic cysteine to lysosomal cystine. CysRx maximizes cancer cell ferroptosis and effectively suppresses tumor growth in vivo. Thus, intracellular nutrient reprogramming has the potential to induce selective ferroptosis in cancer without systematic starvation.


Assuntos
Cistos , Ferroptose , Humanos , Cisteína , Cistina , Ferroptose/genética , Aminoácidos , Lisossomos
4.
Sci Adv ; 9(23): eadh8502, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285440

RESUMO

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.


Assuntos
Anticódon , RNA de Transferência de Fenilalanina , Humanos , Anticódon/genética , RNA de Transferência de Fenilalanina/genética , RNA de Transferência de Fenilalanina/metabolismo , Códon , RNA de Transferência/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824937

RESUMO

A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. The start codon-associated ribosome frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra unannotated from human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational "noise" in nutrient stress adaptation.

6.
Cell Mol Life Sci ; 79(11): 559, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266520

RESUMO

Transcriptional programming plays a key role in determining the cell state. Timely reconfiguration of chromatin structure and attenuation of pluripotent genes are required for efficient embryonic stem cell (ESC) differentiation. Here, we identify METTL3, a core N6-methyladenosine (m6A) catalyzing enzyme, as a crucial modulator of dynamic transcription and chromatin accessibility upon ESC-derived cardiac differentiation. Genome-wide analysis of chromatin-associated RNAs revealed that depletion of METTL3 failed to dramatically attenuate the transcription of pluripotent genes, as well as activate nascent cardiomyocyte-specific transcripts upon differentiation. Consistently, ATAC-seq analysis showed that loss of METTL3 markedly attenuated the dynamic alteration of chromatin accessibility at both promoters and gene bodies, resulting in reduced sensitivity of ESC chromatin structure to cardiac differentiation signal. Furthermore, we found that METTL3 negatively regulated the histone modifications H3K4me3 and H3K36me3, which are involved in METTL3-modulated dynamic chromatin architecture during cell state transition. Unexpectedly, using chromatin-associated m6A sequencing, we found that nuclear m6A underwent a dramatic increase upon differentiation, which correlates with the decrease of chromatin accessibility. Collectively, our findings reveal that METTL3 and nuclear m6A epitranscriptome couple with chromatin state to ensure transcriptional regulation of cell fate transition.


Assuntos
Cromatina , Células-Tronco Embrionárias , Cromatina/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Código das Histonas , Regiões Promotoras Genéticas/genética , Metiltransferases/genética , Metiltransferases/metabolismo
7.
Cell Rep ; 40(3): 111092, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858571

RESUMO

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.


Assuntos
Sistema A de Transporte de Aminoácidos , Aminoácidos , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046037

RESUMO

SAMD9 and SAMD9L (SAMD9/9L) are antiviral factors and tumor suppressors, playing a critical role in innate immune defense against poxviruses and the development of myeloid tumors. SAMD9/9L mutations with a gain-of-function (GoF) in inhibiting cell growth cause multisystem developmental disorders including many pediatric myelodysplastic syndromes. Predicted to be multidomain proteins with an architecture like that of the NOD-like receptors, SAMD9/9L molecular functions and domain structures are largely unknown. Here, we identified a SAMD9/9L effector domain that functions by binding to double-stranded nucleic acids (dsNA) and determined the crystal structure of the domain in complex with DNA. Aided with precise mutations that differentially perturb dsNA binding, we demonstrated that the antiviral and antiproliferative functions of the wild-type and GoF SAMD9/9L variants rely on dsNA binding by the effector domain. Furthermore, we showed that GoF variants inhibit global protein synthesis, reduce translation elongation, and induce proteotoxic stress response, which all require dsNA binding by the effector domain. The identification of the structure and function of a SAMD9/9L effector domain provides a therapeutic target for SAMD9/9L-associated human diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/química , Sítios de Ligação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Ligação Proteica , Estresse Fisiológico , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/metabolismo
9.
Nat Chem Biol ; 18(2): 134-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34887587

RESUMO

In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proliferação de Células , Códon de Terminação , Meios de Cultura/química , DNA Complementar , Fator de Iniciação 3 em Eucariotos/genética , Células HEK293 , Células HeLa , Humanos , Iniciação Traducional da Cadeia Peptídica , Estresse Fisiológico
10.
Nat Commun ; 12(1): 6604, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782646

RESUMO

The fidelity of start codon recognition by ribosomes is paramount during protein synthesis. The current knowledge of eukaryotic translation initiation implies unidirectional 5'→3' migration of the pre-initiation complex (PIC) along the 5' UTR. In probing translation initiation from ultra-short 5' UTR, we report that an AUG triplet near the 5' end can be selected via PIC backsliding. Bi-directional ribosome scanning is supported by competitive selection of closely spaced AUG codons and recognition of two initiation sites flanking an internal ribosome entry site. Transcriptome-wide PIC profiling reveals footprints with an oscillation pattern near the 5' end and start codons. Depleting the RNA helicase eIF4A leads to reduced PIC oscillations and impaired selection of 5' end start codons. Enhancing the ATPase activity of eIF4A promotes nonlinear PIC scanning and stimulates upstream translation initiation. The helicase-mediated PIC conformational switch may provide an operational mechanism that unifies ribosome recruitment, scanning, and start codon selection.


Assuntos
Códon de Iniciação/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Adenosina Trifosfatases/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Células HEK293 , Humanos , Sítios Internos de Entrada Ribossomal , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Leveduras/genética , Leveduras/metabolismo
11.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686314

RESUMO

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Assuntos
Proliferação de Células , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Pressão Osmótica , Biossíntese de Proteínas , Ribossomos/metabolismo , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Animais , Códon de Iniciação , Fibroblastos/patologia , Células HEK293 , Humanos , Cinética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ribossomos/genética , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34131081

RESUMO

Long noncoding RNAs (lncRNAs) are key regulators of gene expression in diverse cellular contexts and biological processes. Given the surprising range of shapes and sizes, how distinct lncRNAs achieve functional specificity remains incompletely understood. Here, we identified a heat shock-inducible lncRNA, Heat, in mouse cells that acts as a transcriptional brake to restrain stress gene expression. Functional characterization reveals that Heat directly binds to heat shock transcription factor 1 (HSF1), thereby targeting stress genes in a trans-acting manner. Intriguingly, Heat is heavily methylated in the form of m6A. Although dispensable for HSF1 binding, Heat methylation is required for silencing stress genes to attenuate heat shock response. Consistently, m6A depletion results in prolonged activation of stress genes. Furthermore, Heat mediates these effects via the nuclear m6A reader YTHDC1, forming a transcriptional silencing complex for stress genes. Our study reveals a crucial role of nuclear epitranscriptome in the transcriptional regulation of heat shock response.


Assuntos
Adenosina/análogos & derivados , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Adenosina/metabolismo , Animais , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Metiltransferases/metabolismo , Camundongos , Ligação Proteica , Fatores de Processamento de RNA/metabolismo , RNA Longo não Codificante/genética , Estresse Fisiológico/genética
13.
Sci Adv ; 7(8)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597240

RESUMO

Translation is a crucial process in cancer development and progression. Many oncogenic signaling pathways target the translation initiation stage to satisfy the increased anabolic demands of cancer cells. Using quantitative profiling of initiating ribosomes, we found that ribosomal pausing at the start codon serves as a "brake" to restrain the translational output. In response to oncogenic RAS signaling, the initiation pausing relaxes and contributes to the increased translational flux. Intriguingly, messenger RNA (mRNA) m6A modification in the vicinity of start codons influences the behavior of initiating ribosomes. Under oncogenic RAS signaling, the reduced mRNA methylation leads to relaxed initiation pausing, thereby promoting malignant transformation and tumor growth. Restored initiation pausing by inhibiting m6A demethylases suppresses RAS-mediated oncogenic translation and subsequent tumorigenesis. Our findings unveil a paradigm of translational control that is co-opted by RAS mutant cancer cells to drive malignant phenotypes.


Assuntos
Carcinogênese , Ribossomos , Carcinogênese/genética , Carcinogênese/metabolismo , Códon de Iniciação/metabolismo , Humanos , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
14.
Nat Struct Mol Biol ; 27(9): 814-821, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719458

RESUMO

Precise control of protein synthesis by engineering sequence elements in 5' untranslated regions (5' UTRs) remains a fundamental challenge. To accelerate our understanding of the cis-regulatory code embedded in 5' UTRs, we devised massively parallel reporter assays from a synthetic messenger RNA library composed of over one million 5' UTR variants. A completely randomized 10-nucleotide sequence preceding an upstream open reading frame (uORF) and downstream GFP drives a broad range of translational outputs and mRNA stability in mammalian cells. While efficient translation protects mRNA from degradation, uORF translation triggers mRNA decay in a UPF1-dependent manner. We also identified translational inhibitory elements with G-quadruplexes as marks for mRNA decay in P-bodies. Unexpectedly, an unstructured A-rich element in 5' UTRs destabilizes mRNAs in the absence of translation, although it enables cap-independent translation. Our results not only identify diverse sequence features of 5' UTRs that control mRNA translatability, but they also reveal ribosome-dependent and ribosome-independent mRNA-surveillance pathways.


Assuntos
Regiões 5' não Traduzidas , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro/genética , Células HEK293 , Humanos , Fases de Leitura Aberta , RNA Mensageiro/química
16.
Nucleic Acids Res ; 48(3): 1029-1042, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31504789

RESUMO

Traditional annotation of protein-encoding genes relied on assumptions, such as one open reading frame (ORF) encodes one protein and minimal lengths for translated proteins. With the serendipitous discoveries of translated ORFs encoded upstream and downstream of annotated ORFs, from alternative start sites nested within annotated ORFs and from RNAs previously considered noncoding, it is becoming clear that these initial assumptions are incorrect. The findings have led to the realization that genetic information is more densely coded and that the proteome is more complex than previously anticipated. As such, interest in the identification and characterization of the previously ignored 'dark proteome' is increasing, though we note that research in eukaryotes and bacteria has largely progressed in isolation. To bridge this gap and illustrate exciting findings emerging from studies of the dark proteome, we highlight recent advances in both eukaryotic and bacterial cells. We discuss progress in the detection of alternative ORFs as well as in the understanding of functions and the regulation of their expression and posit questions for future work.


Assuntos
Regulação da Expressão Gênica , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , Proteoma/genética , Doença/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Fusão de Membrana , Proteínas de Membrana/metabolismo , Biossíntese de Proteínas , Proteínas/fisiologia , Transcrição Gênica
17.
Nat Commun ; 10(1): 5332, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767846

RESUMO

Dynamic mRNA modification in the form of N6-methyladenosine (m6A) adds considerable richness and sophistication to gene regulation. The m6A mark is asymmetrically distributed along mature mRNAs, with approximately 35% of m6A residues located within the coding region (CDS). It has been suggested that methylation in CDS slows down translation elongation. However, neither the decoding feature of endogenous mRNAs nor the physiological significance of CDS m6A has been clearly defined. Here, we found that CDS m6A leads to ribosome pausing in a codon-specific manner. Unexpectedly, removing CDS m6A from these transcripts results in a further decrease of translation. A systemic analysis of RNA structural datasets revealed that CDS m6A positively regulates translation by resolving mRNA secondary structures. We further demonstrate that the elongation-promoting effect of CDS methylation requires the RNA helicase-containing m6A reader YTHDC2. Our findings established the physiological significance of CDS methylation and uncovered non-overlapping function of m6A reader proteins.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Animais , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Metilação , Camundongos , Fases de Leitura Aberta/genética , RNA Helicases/genética , RNA Mensageiro/genética
18.
Nat Chem Biol ; 15(9): 865-871, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31383972

RESUMO

RNA modification in the form of N6-methyladenosine (m6A) regulates nearly all the post-transcriptional processes. The asymmetric m6A deposition suggests that regional methylation may have distinct functional consequences. However, current RNA biology tools do not distinguish the contribution of individual m6A modifications. Here we report the development of 'm6A editing', a powerful approach that enables m6A installation and erasure from cellular RNAs without changing the primary sequence. We engineered fusions of CRISPR-Cas9 and a single-chain m6A methyltransferase that can be programmed with a guide RNA. The resultant m6A 'writers' allow functional comparison of single site methylation in different messenger RNA regions. We further engineered m6A 'erasers' by fusing CRISPR-Cas9 with ALKBH5 or FTO to achieve site-specific demethylation of RNAs. The development of programmable m6A editing not only expands the scope of RNA engineering, but also facilitates mechanistic understanding of epitranscriptome.


Assuntos
Adenosina/análogos & derivados , Sistemas CRISPR-Cas , Edição de Genes/métodos , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Adenosina/química , Adenosina/metabolismo , Sequência de Bases , Linhagem Celular , Humanos , Metiltransferases/classificação , RNA Mensageiro/química , RNA Mensageiro/genética
19.
RNA Biol ; 16(8): 1044-1054, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31119975

RESUMO

The structure of mRNA in vivo is unwound to some extent in response to multiple factors involved in the translation process, resulting in significant differences from the structure of the same mRNA in vitro. In this study, we have proposed a novel application of deep neural networks, named DeepDRU, to predict the degree of mRNA structure unwinding in vivo by fitting five quantifiable features that may affect mRNA folding: ribosome density (RD), minimum folding free energy (MFE), GC content, translation initiation ribosome density (INI) and mRNA structure position (POS). mRNA structures with adjustment of the simulated structural features were designed and then fed into the trained DeepDRU model. We found unique effect regions of these five features on mRNA structure in vivo. Strikingly, INI is the most critical factor affecting the structure of mRNA in vivo, and structural sequence features, including MFE and GC content, have relatively smaller effects. DeepDRU provides a new paradigm for predicting the unwinding capability of mRNA structure in vivo. This improved knowledge about the mechanisms of factors influencing the structural capability of mRNA to unwind will facilitate the design and functional analysis of mRNA structure in vivo.


Assuntos
Conformação de Ácido Nucleico , RNA Mensageiro/química , Saccharomyces cerevisiae/química , Redes Neurais de Computação , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
20.
Life Sci Alliance ; 1(4): e201800113, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456371

RESUMO

Reversible post-transcriptional modifications on messenger RNA emerge as prevalent phenomena in RNA metabolism. The most abundant among them is N6-methyladenosine (m6A) which is pivotal for RNA metabolism and function; its role in stress response remains elusive. We have discovered that in response to oxidative stress, transcripts are additionally m6A modified in their 5' vicinity. Distinct from that of the translationally active mRNAs, this methylation pattern provides a selective mechanism for triaging mRNAs from the translatable pool to stress-induced stress granules. These stress-induced newly methylated sites are selectively recognized by the YTH domain family 3 (YTHDF3) "reader" protein, thereby revealing a new role for YTHDF3 in shaping the selectivity of stress response. Our findings describe a previously unappreciated function for RNA m6A modification in oxidative-stress response and expand the breadth of physiological roles of m6A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...